Polymorphism on human aromatase affects protein dynamics and substrate binding: spectroscopic evidence.

Giovanna Di Nardo, Almerinda Di Venere, Chao Zhang, Eleonora Nicolai, Silvia Castrignanò, Luisa Di Paola, Gianfranco Gilardi, Giampiero Mei
Author Information
  1. Giovanna Di Nardo: Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
  2. Almerinda Di Venere: Dipartimento di Medicina Sperimentale, Università di Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
  3. Chao Zhang: Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
  4. Eleonora Nicolai: Dipartimento di Medicina Sperimentale, Università di Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
  5. Silvia Castrignanò: Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
  6. Luisa Di Paola: Dipartimento di Ingegneria, Unità di Fondamenti Chimico-Fisici dell'Ingegneria Chimica, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy.
  7. Gianfranco Gilardi: Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Turin, Italy. gianfranco.gilardi@unito.it.
  8. Giampiero Mei: Dipartimento di Medicina Sperimentale, Università di Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. mei@med.uniroma2.it.

Abstract

Human aromatase is a member of the cytochrome P450 superfamily, involved in steroid hormones biosynthesis. In particular, it converts androgen into estrogens being therefore responsible for the correct sex steroids balance. Due to its capacity in producing estrogens it has also been considered as a promising target for breast cancer therapy. Two single-nucleotide polymorphisms (R264C and R264H) have been shown to alter aromatase activity and they have been associated to an increased or decreased risk for estrogen-dependent pathologies. Here, the effect of these mutations on the protein dynamics is investigated by UV/FTIR and time resolved fluorescence spectroscopy. H/D exchange rates were measured by FTIR for the three proteins in the ligand-free, substrate- and inhibitor-bound forms and the data indicate that the wild-type enzyme undergoes a conformational change leading to a more compact tertiary structure upon substrate or inhibitor binding. Indeed, the H/D exchange rates are decreased when a ligand is present. In the variants, the exchange rates in the ligand-free and -bound forms are similar, indicating that a structural change is lacking, despite the single amino acid substitution is located in the peripheral shell of the protein molecule. Moreover, the fluorescence lifetimes data show that the quenching effect on tryptophan-224 observed upon ligand binding in the wild-type, is absent in both variants. Since this residue is located in the catalytic pocket, these findings suggest that substrate entrance and/or retention in the active site is partially compromised in both mutants. A contact network analysis demonstrates that the protein structure is organized in two main clusters, whose connectivity is altered by ligand binding, especially in correspondence of helix-G, where the amino acid substitutions occur. Our findings demonstrate that SNPs resulting in mutations on aromatase surface modify the protein flexibility that is required for substrate binding and catalysis. The cluster analysis provides a rationale for such effect, suggesting helix G as a possible target for aromatase inhibition.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13121-2 [PMID: 14597705]
  2. Biochim Biophys Acta. 2007 Mar;1770(3):390-401 [PMID: 16920266]
  3. Methods Mol Biol. 2021;2253:7-20 [PMID: 33315215]
  4. Arch Biochem Biophys. 2016 Jul 15;602:106-115 [PMID: 26718083]
  5. PLoS One. 2013 Dec 11;8(12):e82118 [PMID: 24349198]
  6. Biol Direct. 2019 Aug 23;14(1):16 [PMID: 31443736]
  7. Nature. 1971 Mar 26;230(5291):215-8 [PMID: 4926710]
  8. Biochemistry. 1993 Sep 21;32(37):9600-8 [PMID: 7690587]
  9. Nature. 2009 Jan 8;457(7226):219-23 [PMID: 19129847]
  10. Biol Direct. 2020 Feb 13;15(1):3 [PMID: 32054490]
  11. Front Pharmacol. 2015 Oct 29;6:248 [PMID: 26578958]
  12. Antioxid Redox Signal. 2010 Oct;13(8):1273-96 [PMID: 20446763]
  13. PLoS One. 2013 Jun 04;8(6):e64840 [PMID: 23750215]
  14. J Chem Inf Model. 2013 Aug 26;53(8):2047-56 [PMID: 23927370]
  15. Biotechnol Appl Biochem. 2013 Jan-Feb;60(1):92-101 [PMID: 23586996]
  16. J Chem Inf Model. 2012 Jun 25;52(6):1595-606 [PMID: 22621202]
  17. Biochim Biophys Acta Proteins Proteom. 2020 Feb;1868(2):140331 [PMID: 31760039]
  18. J Steroid Biochem Mol Biol. 2020 Feb;196:105507 [PMID: 31669572]
  19. PLoS One. 2012;7(2):e32565 [PMID: 22384274]
  20. Biochemistry. 2002 Dec 17;41(50):14771-8 [PMID: 12475225]
  21. Biochemistry. 2013 Aug 27;52(34):5821-9 [PMID: 23899247]
  22. Biol Direct. 2020 Jun 15;15(1):10 [PMID: 32539851]
  23. Biol Direct. 2020 Oct 14;15(1):18 [PMID: 33054808]
  24. Biol Direct. 2019 Feb 13;14(1):4 [PMID: 30760313]
  25. Biochemistry. 2015 Oct 13;54(40):6153-61 [PMID: 26390021]
  26. J Biomol Struct Dyn. 2021 Jan;39(1):319-329 [PMID: 31980009]
  27. J Steroid Biochem Mol Biol. 2017 Mar;167:23-32 [PMID: 27702664]
  28. Eur J Med Chem. 2017 Sep 8;137:365-438 [PMID: 28622580]
  29. Curr Protein Pept Sci. 2016;17(1):30-6 [PMID: 26412792]
  30. Biochemistry. 2006 Dec 26;45(51):15318-26 [PMID: 17176054]
  31. Biochemistry. 1995 Jan 10;34(1):172-9 [PMID: 7819193]
  32. Biol Direct. 2019 Nov 21;14(1):22 [PMID: 31752974]
  33. J Mol Recognit. 2016 Sep;29(9):446-51 [PMID: 27060481]
  34. Biotechnol Appl Biochem. 2018 Jan;65(1):46-53 [PMID: 28926141]
  35. Biol Direct. 2019 Apr 29;14(1):8 [PMID: 31036036]
  36. J Steroid Biochem Mol Biol. 2017 Apr;168:19-25 [PMID: 28109841]
  37. Curr Opin Struct Biol. 2015 Apr;31:43-8 [PMID: 25796032]
  38. Biol Direct. 2019 Nov 14;14(1):21 [PMID: 31727118]
  39. J Proteome Res. 2020 Nov 6;19(11):4576-4586 [PMID: 32551648]

MeSH Term

Aromatase
Catalysis
Catalytic Domain
Humans
Polymorphism, Genetic
Protein Binding
Spectrometry, Fluorescence

Chemicals

Aromatase
CYP19A1 protein, human

Word Cloud

Created with Highcharts 10.0.0aromataseproteinbindingsubstrateeffectexchangeratesligandestrogenstargetdecreasedmutationsdynamicsfluorescenceH/Dligand-freeformsdatawild-typechangestructureuponvariantsaminoacidlocatedfindingsanalysisHumanmembercytochromeP450superfamilyinvolvedsteroidhormonesbiosynthesisparticularconvertsandrogenthereforeresponsiblecorrectsexsteroidsbalanceDuecapacityproducingalsoconsideredpromisingbreastcancertherapyTwosingle-nucleotidepolymorphismsR264CR264Hshownalteractivityassociatedincreasedriskestrogen-dependentpathologiesinvestigatedUV/FTIRtimeresolvedspectroscopymeasuredFTIRthreeproteinssubstrate-inhibitor-boundindicateenzymeundergoesconformationalleadingcompacttertiaryinhibitorIndeedpresent-boundsimilarindicatingstructurallackingdespitesinglesubstitutionperipheralshellmoleculeMoreoverlifetimesshowquenchingtryptophan-224observedabsentSinceresiduecatalyticpocketsuggestentranceand/orretentionactivesitepartiallycompromisedmutantscontactnetworkdemonstratesorganizedtwomainclusterswhoseconnectivityalteredespeciallycorrespondencehelix-GsubstitutionsoccurdemonstrateSNPsresultingsurfacemodifyflexibilityrequiredcatalysisclusterprovidesrationalesuggestinghelixGpossibleinhibitionPolymorphismhumanaffectsbinding:spectroscopicevidenceAromatasepolymorphismFluorescenceLigandMolecularmodeling

Similar Articles

Cited By