Clinical utility of and its receptors ( and ) in thyroid nodules: evaluation based on single nucleotide polymorphisms and mRNA analysis.

Karina Colombera Peres, Larissa Teodoro, Laís Helena Pereira Amaral, Elisângela Souza Teixeira, Icléia Siqueira Barreto, Leandro Luiz Lopes de Freitas, Valdemar Maximo, Lígia V Montalli Assumpção, Natassia Elena Bufalo, Laura Sterian Ward
Author Information
  1. Karina Colombera Peres: Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil, karinacolombera@gmail.com.
  2. Larissa Teodoro: Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  3. Laís Helena Pereira Amaral: Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  4. Elisângela Souza Teixeira: Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  5. Icléia Siqueira Barreto: Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  6. Leandro Luiz Lopes de Freitas: Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  7. Valdemar Maximo: Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
  8. Lígia V Montalli Assumpção: Divisão de Endocrinologia, Departamento de Medicina, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  9. Natassia Elena Bufalo: Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
  10. Laura Sterian Ward: Laboratório de Genética Molecular do Câncer, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.

Abstract

OBJECTIVE: Abnormalities involving the gene and its receptors are common in several types of cancer and often related to tumor progression. We investigated the role of single nucleotide polymorphisms (SNP) in the susceptibility to cancer, their impact on its features, as well as the role of mRNA expression of these genes in thyroid malignancy.
METHODS: We genotyped , , and SNPs in 157 papillary thyroid cancer (PTC) patients and 200 healthy controls. Further, we investigated RNA samples of 47 PTC and 80 benign nodules, searching for differential mRNA expression.
RESULTS: SNPs rs1800472 and rs1800469 were associated with characteristics of PTC aggressiveness. Effect predictor software analysis of nonsynonymous SNP rs1800472 indicated increasing protein stability and post-translational changes. mRNA expression was upregulated in PTC and downregulated in benign samples, differentiating malignant from benign nodules (p<0.0001); PTC from goiter (p<0.0001); and PTC from FA (p<0.0001). mRNA expression was upregulated in goiter and PTC, but downregulated in FA, distinguishing PTC from goiter (p=0.0049); PTC from FA (p<0.0001); and goiter from FA (p=0.0267). On the other hand, was downregulated in all histological types analyzed and was not able to differentiate thyroid nodules.
CONCLUSION: polymorphism rs1800472 may confer greater activity to TGF-β1 in the tumor microenvironment, favoring PTC aggressiveness. Evaluation of and mRNA levels may be useful to identify malignancy in thyroid nodules.

Keywords

References

  1. J Cell Sci. 2003 Jan 15;116(Pt 2):217-24 [PMID: 12482908]
  2. Clin Epigenetics. 2020 Feb 11;12(1):25 [PMID: 32046777]
  3. Br J Plast Surg. 2004 Apr;57(3):215-21 [PMID: 15006522]
  4. Pharmacogenomics. 2018 Nov;19(17):1335-1344 [PMID: 30430914]
  5. JAMA. 2018 Mar 06;319(9):914-924 [PMID: 29509871]
  6. Eur Cytokine Netw. 2016 Nov 1;27(4):81-89 [PMID: 28396298]
  7. Arch Endocrinol Metab. 2019 Sep 02;63(5):536-544 [PMID: 31482959]
  8. Endocr Pathol. 1998 Autumn;9(3):209-216 [PMID: 12114711]
  9. Radiat Res. 2009 Jan;171(1):77-88 [PMID: 19138047]
  10. Int J Cancer. 2009 Feb 1;124(3):608-13 [PMID: 19004027]
  11. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  12. Int J Oncol. 2019 Nov;55(5):1097-1109 [PMID: 31545407]
  13. PLoS One. 2018 Aug 2;13(8):e0201775 [PMID: 30071009]
  14. Gac Med Mex. 2017 Mar - Apr;153(2):238-250 [PMID: 28474710]
  15. Nat Rev Immunol. 2010 Aug;10(8):554-67 [PMID: 20616810]
  16. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102 [PMID: 28407145]
  17. Cancer. 2017 Feb 1;123(3):372-381 [PMID: 27741354]
  18. Arq Bras Endocrinol Metabol. 2009 Oct;53(7):884-7 [PMID: 19942992]
  19. Hum Mol Genet. 2007 Sep 1;16(17):2021-30 [PMID: 17588962]
  20. Brain Tumor Pathol. 2006 Apr;23(1):7-12 [PMID: 18095113]
  21. Nat Med. 2013 Nov;19(11):1423-37 [PMID: 24202395]
  22. Cytokine Growth Factor Rev. 2006 Feb-Apr;17(1-2):41-58 [PMID: 16310402]
  23. Cell. 2003 Jun 13;113(6):685-700 [PMID: 12809600]
  24. Cold Spring Harb Perspect Biol. 2018 Aug 1;10(8): [PMID: 28778871]
  25. BMC Cancer. 2015 Dec 24;15:1010 [PMID: 26703884]
  26. J Otolaryngol Head Neck Surg. 2014 Jul 18;43:22 [PMID: 25927212]
  27. J Med Genet. 2006 Apr;43(4):295-305 [PMID: 16014699]
  28. Tumour Biol. 2019 Aug;41(8):1010428319869096 [PMID: 31405342]
  29. Horm Metab Res. 1998 Oct;30(10):624-8 [PMID: 9851670]
  30. BMC Cancer. 2004 Mar 12;4:9 [PMID: 15113441]
  31. Bioinformatics. 2005 Jan 15;21(2):263-5 [PMID: 15297300]
  32. J Thyroid Res. 2011;2011:431718 [PMID: 21760980]
  33. Ann Clin Lab Sci. 2016 Jul;46(4):401-6 [PMID: 27466300]
  34. Cancer Cell. 2003 Jun;3(6):531-6 [PMID: 12842082]
  35. Int J Biol Markers. 2020 Feb;35(1_suppl):8-11 [PMID: 32079468]
  36. Cold Spring Harb Perspect Biol. 2017 Jun 1;9(6): [PMID: 28108486]
  37. PLoS Comput Biol. 2014 Jan;10(1):e1003440 [PMID: 24453961]
  38. Front Oncol. 2020 Jan 15;9:1535 [PMID: 32010624]
  39. Proteins. 2006 Mar 1;62(4):1125-32 [PMID: 16372356]
  40. Cancer Cell Int. 2018 Nov 20;18:191 [PMID: 30479570]
  41. Protein Sci. 2014 Aug;23(8):1077-93 [PMID: 24888500]
  42. Endokrynol Pol. 2016;67(4):375-82 [PMID: 27345036]

MeSH Term

Humans
Polymorphism, Single Nucleotide
RNA, Messenger
Receptor, Transforming Growth Factor-beta Type I
Receptor, Transforming Growth Factor-beta Type II
Thyroid Neoplasms
Thyroid Nodule
Transforming Growth Factor beta1
Tumor Microenvironment

Chemicals

RNA, Messenger
TGFB1 protein, human
Transforming Growth Factor beta1
Receptor, Transforming Growth Factor-beta Type I
Receptor, Transforming Growth Factor-beta Type II
TGFBR1 protein, human
TGFBR2 protein, human

Word Cloud

Created with Highcharts 10.0.0PTCmRNAexpressionthyroidcancernodulesp<00001goiterFAbenignrs1800472downregulatedreceptorstypestumorinvestigatedrolesinglenucleotidepolymorphismsSNPmalignancySNPssamplesaggressivenessanalysisupregulatedp=0polymorphismmayOBJECTIVE:AbnormalitiesinvolvinggenecommonseveraloftenrelatedprogressionsusceptibilityimpactfeatureswellgenesMETHODS:genotyped157papillarypatients200healthycontrolsRNA4780searchingdifferentialRESULTS:rs1800469associatedcharacteristicsEffectpredictorsoftwarenonsynonymousindicatedincreasingproteinstabilitypost-translationalchangesdifferentiatingmalignantdistinguishing00490267handhistologicalanalyzedabledifferentiateCONCLUSION:confergreateractivityTGF-β1microenvironmentfavoringEvaluationlevelsusefulidentifyClinicalutilitynodules:evaluationbasedThyroidtransforminggrowthfactor-β

Similar Articles

Cited By