Altered Extended Locus Coeruleus and Ventral Tegmental Area Networks in Boys with Autism Spectrum Disorders: A Resting-State Functional Connectivity Study.

Yiting Huang, Siyi Yu, Georgia Wilson, Joel Park, Ming Cheng, Xuejun Kong, Tao Lu, Jian Kong
Author Information
  1. Yiting Huang: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  2. Siyi Yu: Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  3. Georgia Wilson: Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  4. Joel Park: Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  5. Ming Cheng: Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  6. Xuejun Kong: Martino Imaging Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  7. Tao Lu: School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
  8. Jian Kong: Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Abstract

INTRODUCTION: Previous studies have suggested that cerebral projections of the norepinephrine (NE) and dopamine (DA) systems have important etiology and treatment implications for autism spectrum disorder (ASD).
METHODS: We used functional magnetic resonance imaging to evaluate spontaneous resting state functional connectivity in boys aged 7-15 years with ASD (n=86) and age-, intelligence quotient-matched typically developing boys (TD, n=118). Specifically, we investigated functional connectivity of the locus coeruleus (LC) and ventral tegmental area (VTA), the main source projection of neurotransmitters NE and DA, respectively.
RESULTS: 1) Both the LC and VTA showed reduced connectivity with the postcentral gyrus (PoCG) in boys with ASD, reflecting the potential roles of NE and DA in modulating the function of the somatosensory cortex in boys with ASD. 2) The VTA had increased connectivity with bilateral thalamus in ASD; this alteration was correlated with repetitive and restrictive features. 3) Altered functional connectivity of both the LC and VTA with brain regions such as the angular gyrus (AG), middle temporal gyrus visual area (MT/V5), and occipital face area (OFA) in ASD group.
DISCUSSION: Our findings implicate the role of LC-NE and VTA-DA systems from the perspective of functional neuroimaging and may shed light on pharmacological studies targeting NE and DA for the treatment of autism in the future.

Keywords

References

  1. Brain Struct Funct. 2017 Dec;222(9):4203-4217 [PMID: 28647901]
  2. JAMA Psychiatry. 2018 May 1;75(5):514-523 [PMID: 29590280]
  3. J Neurosci. 2015 May 6;35(18):6979-86 [PMID: 25948250]
  4. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):12060-5 [PMID: 23776244]
  5. Front Behav Neurosci. 2009 Aug 27;3:21 [PMID: 19753142]
  6. J Neurosci. 2014 Nov 12;34(46):15340-6 [PMID: 25392501]
  7. Cereb Cortex. 1993 Mar-Apr;3(2):79-94 [PMID: 8490322]
  8. J Neurosci. 2012 Jul 11;32(28):9582-7 [PMID: 22787044]
  9. Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 [PMID: 20471808]
  10. Acta Neurobiol Exp (Wars). 2007;67(4):481-8 [PMID: 18320725]
  11. J Neurosci. 2013 May 8;33(19):8243-9 [PMID: 23658163]
  12. Radiology. 2014 Jul;272(1):29-49 [PMID: 24956047]
  13. J Autism Dev Disord. 2009 Jan;39(1):1-11 [PMID: 18512135]
  14. J Neurosci. 2005 Jun 29;25(26):6076-83 [PMID: 15987937]
  15. J Am Acad Child Adolesc Psychiatry. 2013 Mar;52(3):279-289.e16 [PMID: 23452684]
  16. Addict Biol. 2017 Mar;22(2):291-302 [PMID: 26549324]
  17. Res Dev Disabil. 2006 May-Jun;27(3):254-89 [PMID: 16002261]
  18. Neuron. 2006 May 4;50(3):507-17 [PMID: 16675403]
  19. Brain. 2001 Oct;124(Pt 10):2059-73 [PMID: 11571222]
  20. J Neurosci. 2003 Mar 1;23(5):1879-85 [PMID: 12629192]
  21. Res Autism Spectr Disord. 2012 Winter;6(1):337-344 [PMID: 22059092]
  22. Brain Res Brain Res Rev. 2003 Apr;42(1):33-84 [PMID: 12668290]
  23. Annu Rev Neurosci. 2005;28:157-89 [PMID: 16022593]
  24. Arch Gen Psychiatry. 1977 May;34(5):553-6 [PMID: 558741]
  25. J Autism Dev Disord. 2003 Aug;33(4):427-33 [PMID: 12959421]
  26. Int J Dev Neurosci. 2015 Jun;43:70-7 [PMID: 25862937]
  27. Brain. 2014 Jun;137(Pt 6):1799-812 [PMID: 24755274]
  28. Autism. 2020 Apr;24(3):795-801 [PMID: 31416333]
  29. Cereb Cortex. 2005 Dec;15(12):1877-86 [PMID: 15728739]
  30. Nat Rev Neurosci. 2010 Jun;11(6):417-28 [PMID: 20445542]
  31. Brain. 2008 Apr;131(Pt 4):1000-12 [PMID: 18234695]
  32. Eur J Neurosci. 2018 Jan;47(2):115-125 [PMID: 29247487]
  33. Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1413-20 [PMID: 8941953]
  34. Brain Imaging Behav. 2010 Jun;4(2):189-97 [PMID: 20502989]
  35. J Am Acad Child Adolesc Psychiatry. 2017 Jun;56(6):466-474 [PMID: 28545751]
  36. Dev Cogn Neurosci. 2019 Feb;35:5-11 [PMID: 29731417]
  37. Brain Res. 2016 Jun 15;1641(Pt B):217-33 [PMID: 26790349]
  38. Trends Cogn Sci. 2016 Aug;20(8):570-578 [PMID: 27353574]
  39. Front Integr Neurosci. 2015 Apr 01;9:21 [PMID: 25883556]
  40. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 [PMID: 16945915]
  41. Dev Sci. 2011 Sep;14(5):1075-88 [PMID: 21884323]
  42. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  43. Brain. 2018 Sep 1;141(9):2795-2805 [PMID: 30016410]
  44. Mol Pharmacol. 2008 Nov;74(5):1463-75 [PMID: 18703671]
  45. J Autism Dev Disord. 1987 Sep;17(3):439-46 [PMID: 3654495]
  46. Brain Imaging Behav. 2016 Sep;10(3):761-71 [PMID: 26489976]
  47. Biol Psychiatry. 1999 Nov 1;46(9):1309-20 [PMID: 10560036]
  48. J Psychopharmacol. 2018 Jun;32(6):641-653 [PMID: 29484909]
  49. J Clin Exp Neuropsychol. 2017 Aug;39(6):596-606 [PMID: 27841098]
  50. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  51. Front Neurol. 2018 Dec 19;9:1120 [PMID: 30619071]
  52. Hippocampus. 2013 Mar;23(3):187-92 [PMID: 23129267]
  53. Dev Neurosci. 2017;39(5):355-360 [PMID: 28750400]
  54. Science. 2005 Nov 4;310(5749):819-23 [PMID: 16272115]
  55. Neuron. 2002 Jan 17;33(2):163-75 [PMID: 11804565]
  56. Autism Res. 2017 May;10(5):801-809 [PMID: 27896947]
  57. Trends Neurosci. 2007 May;30(5):194-202 [PMID: 17408759]
  58. Int Arch Med. 2010 Oct 06;3:24 [PMID: 20925949]
  59. Neuron. 2016 Mar 16;89(6):1331-1342 [PMID: 26948894]
  60. Curr Opin Neurobiol. 2003 Dec;13(6):663-70 [PMID: 14662366]
  61. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Sep;2(6):518-527 [PMID: 29104944]
  62. Prog Brain Res. 2000;126:165-82 [PMID: 11105646]
  63. Nat Neurosci. 2017 Dec;20(12):1669-1679 [PMID: 29184210]
  64. eNeuro. 2016 Apr 29;3(2): [PMID: 27280154]
  65. Neuroimage. 2013 Aug 1;76:183-201 [PMID: 23499792]
  66. Biol Psychiatry. 2012 Feb 15;71(4):327-34 [PMID: 22115620]
  67. Psychopharmacology (Berl). 2016 Apr;233(7):1171-8 [PMID: 26762378]
  68. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5181-6 [PMID: 17360372]
  69. Trends Cogn Sci. 2017 May;21(5):357-371 [PMID: 28363681]
  70. Neuroreport. 2000 Aug 21;11(12):2765-7 [PMID: 10976959]

Word Cloud

Created with Highcharts 10.0.0ASDfunctionalconnectivityNEDAboysareaVTAautismLCgyrusstudiesnorepinephrinedopaminesystemstreatmentspectrumdisorderlocuscoeruleusventraltegmentalAlteredINTRODUCTION:PrevioussuggestedcerebralprojectionsimportantetiologyimplicationsMETHODS:usedmagneticresonanceimagingevaluatespontaneousrestingstateaged7-15yearsn=86age-intelligencequotient-matchedtypicallydevelopingTDn=118SpecificallyinvestigatedmainsourceprojectionneurotransmittersrespectivelyRESULTS:1showedreducedpostcentralPoCGreflectingpotentialrolesmodulatingfunctionsomatosensorycortex2increasedbilateralthalamusalterationcorrelatedrepetitiverestrictivefeatures3brainregionsangularAGmiddletemporalvisualMT/V5occipitalfaceOFAgroupDISCUSSION:findingsimplicateroleLC-NEVTA-DAperspectiveneuroimagingmayshedlightpharmacologicaltargetingfutureExtendedLocusCoeruleusVentralTegmentalAreaNetworksBoysAutismSpectrumDisorders:Resting-StateFunctionalConnectivityStudy

Similar Articles

Cited By