Genome-wide association analysis of bean fly resistance and agro-morphological traits in common bean.

Wilson Nkhata, Hussein Shimelis, Rob Melis, Rowland Chirwa, Tenyson Mzengeza, Isack Mathew, Admire Shayanowako
Author Information
  1. Wilson Nkhata: African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa. ORCID
  2. Hussein Shimelis: African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa. ORCID
  3. Rob Melis: African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
  4. Rowland Chirwa: Alliance of Biodiversity International and CIAT, Chitedze Agricultural Station, Lilongwe, Malawi.
  5. Tenyson Mzengeza: Department of Agricultural Research Service, Chitedze Agricultural Research Station, Lilongwe, Malawi.
  6. Isack Mathew: African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
  7. Admire Shayanowako: African Centre for Crop Improvement, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.

Abstract

The bean fly (Ophiomyia spp) is a key insect pest causing significant crop damage and yield loss in common bean (Phaseolus vulgaris L., 2n = 2x = 22). Development and deployment of agronomic superior and bean fly resistant common bean varieties aredependent on genetic variation and the identification of genes and genomic regions controlling economic traits. This study's objective was to determine the population structure of a diverse panel of common bean genotypes and deduce associations between bean fly resistance and agronomic traits based on single nucleotide polymorphism (SNP) markers. Ninety-nine common bean genotypes were phenotyped in two seasons at two locations and genotyped with 16 565 SNP markers. The genotypes exhibited significant variation for bean fly damage severity (BDS), plant mortality rate (PMR), and pupa count (PC). Likewise, the genotypes showed significant variation for agro-morphological traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield (GYD). The genotypes were delineated into two populations, which were based on the Andean and Mesoamerican gene pools. The genotypes exhibited a minimum membership coefficient of 0.60 to their respective populations. Eighty-three significant (P<0.01) markers were identified with an average linkage disequilibrium of 0.20 at 12Mb across the 11 chromosomes. Three markers were identified, each having pleiotropic effects on two traits: M100049197 (BDS and NPP), M3379537 (DTF and PC), and M13122571 (NPP and GYD). The identified markers are useful for marker-assisted selection in the breeding program to develop common bean genotypes with resistance to bean fly damage.

References

  1. Database (Oxford). 2020 Jan 1;2020: [PMID: 32761142]
  2. Molecules. 2017 Aug 17;22(8): [PMID: 28817105]
  3. Theor Appl Genet. 2010 Jul;121(2):237-48 [PMID: 20224891]
  4. Front Genet. 2020 Jun 30;11:698 [PMID: 32714377]
  5. Theor Appl Genet. 2015 Aug;128(8):1555-67 [PMID: 26003191]
  6. Mol Ecol Resour. 2011 Mar;11 Suppl 1:123-36 [PMID: 21429169]
  7. G3 (Bethesda). 2019 Jun 5;9(6):1881-1892 [PMID: 31167806]
  8. Genet Resour Crop Evol. 2019;66(3):707-722 [PMID: 30956400]
  9. Bioinformatics. 2011 Nov 1;27(21):3070-1 [PMID: 21926124]
  10. Genes (Basel). 2020 Oct 30;11(11): [PMID: 33143347]
  11. Front Genet. 2018 Mar 12;9:76 [PMID: 29593779]
  12. PLoS One. 2019 Feb 7;14(2):e0212140 [PMID: 30730982]
  13. Front Plant Sci. 2019 Feb 20;10:184 [PMID: 30842785]
  14. Nat Genet. 2006 Aug;38(8):904-9 [PMID: 16862161]
  15. Plant Genome. 2015 Jul;8(2):eplantgenome2014.09.0059 [PMID: 33228312]
  16. Plant Genome. 2016 Nov;9(3): [PMID: 27902795]
  17. Theor Appl Genet. 2012 Dec;125(8):1717-26 [PMID: 22864386]
  18. Evol Appl. 2009 Nov;2(4):504-22 [PMID: 25567895]
  19. PLoS One. 2016 Mar 01;11(3):e0150506 [PMID: 26930078]
  20. PLoS One. 2019 Dec 4;14(12):e0225383 [PMID: 31800595]
  21. Theor Appl Genet. 2009 Mar;118(5):979-92 [PMID: 19130029]
  22. PLoS One. 2017 Jan 11;12(1):e0169954 [PMID: 28076395]
  23. J Mol Biol. 2008 Sep 26;382(1):213-22 [PMID: 18625243]
  24. Cell. 1997 Sep 5;90(5):929-38 [PMID: 9298904]
  25. BMC Genomics. 2016 Aug 31;17:697 [PMID: 27581193]
  26. BMC Plant Biol. 2008 Jan 23;8:7 [PMID: 18215288]
  27. BMC Genomics. 2017 May 30;18(1):423 [PMID: 28558696]
  28. Theor Appl Genet. 2009 Dec;120(1):1-12 [PMID: 19756469]
  29. Front Plant Sci. 2019 Jul 24;10:962 [PMID: 31428109]
  30. Mol Biol Rep. 2020 Sep;47(9):6769-6783 [PMID: 32852680]
  31. BMC Plant Biol. 2011 Mar 24;11:52 [PMID: 21435233]
  32. Theor Appl Genet. 2006 Apr;112(6):1149-63 [PMID: 16432734]
  33. PLoS One. 2016 Jun 06;11(6):e0156391 [PMID: 27270627]
  34. Mol Ecol Resour. 2015 Sep;15(5):1179-91 [PMID: 25684545]
  35. Sci Rep. 2021 Feb 3;11(1):2964 [PMID: 33536468]
  36. Bioinformatics. 2012 Sep 15;28(18):2397-9 [PMID: 22796960]
  37. Genes (Basel). 2018 Dec 21;10(1): [PMID: 30583474]
  38. Nat Genet. 2014 Jul;46(7):707-13 [PMID: 24908249]
  39. Hortic Res. 2019 Jan 1;6:9 [PMID: 30622722]
  40. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  41. J Pest Sci (2004). 2016;89:45-57 [PMID: 26924956]
  42. Plant Sci. 2012 Nov;196:125-31 [PMID: 23017907]

MeSH Term

Phaseolus
Animals
Genome-Wide Association Study
Polymorphism, Single Nucleotide
Genotype
Phenotype
Disease Resistance
Plant Diseases
Diptera

Word Cloud

Created with Highcharts 10.0.0beangenotypesflycommonmarkerssignificanttraitstwodamagevariationresistanceNPPidentifiedyield=agronomicbasedSNPexhibitedBDSplantPCagro-morphologicaldaysDTFnumberperGYDpopulations0OphiomyiasppkeyinsectpestcausingcroplossPhaseolusvulgarisL2n2x22Developmentdeploymentsuperiorresistantvarietiesaredependentgeneticidentificationgenesgenomicregionscontrollingeconomicstudy'sobjectivedeterminepopulationstructurediversepaneldeduceassociationssinglenucleotidepolymorphismNinety-ninephenotypedseasonslocationsgenotyped16565severitymortalityratePMRpupacountLikewiseshowedfloweringmaturityDTMpodsseedspodNSPgraindelineatedAndeanMesoamericangenepoolsminimummembershipcoefficient60respectiveEighty-threeP<001averagelinkagedisequilibrium2012Mbacross11chromosomesThreepleiotropiceffectstraits:M100049197M3379537M13122571usefulmarker-assistedselectionbreedingprogramdevelopGenome-wideassociationanalysis

Similar Articles

Cited By