Running Performance Variability among Runners from Different Brazilian States: A Multilevel Approach.

Mabliny Thuany, Thayse Natacha Gomes, Lee Hill, Thomas Rosemann, Beat Knechtle, Marcos B Almeida
Author Information
  1. Mabliny Thuany: Post-Graduation Program of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, 49100-000 Sergipe, Brazil. ORCID
  2. Thayse Natacha Gomes: Post-Graduation Program of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, 49100-000 Sergipe, Brazil. ORCID
  3. Lee Hill: Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada. ORCID
  4. Thomas Rosemann: Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland. ORCID
  5. Beat Knechtle: Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland. ORCID
  6. Marcos B Almeida: Post-Graduation Program of Physical Education, Federal University of Sergipe (UFS), São Cristóvão, 49100-000 Sergipe, Brazil.

Abstract

The ecological model theory highlights that human development (or a given behavior) is the result of the interaction of variables derived from different levels, comprising those directly related to the subjects and those related to the environment. Given that, the purpose of this study is to establish whether runners' performance may vary among different Brazilian states, as the factors associated with this difference. The sample comprised 1151 Brazilian runners (61.8% men) that completed an online questionnaire, providing information about biological (sex, age, height, and weight), training (running pace, frequency and volume/week, and motivation), sociodemographic (place of residence and wage) aspects, and perceptions about the environmental influences on the practice. Information about state variables was obtained from official institutes, and comprised the human development index (HDI), athletics events, and violence index. Multilevel analysis was conducted in HLM software. State-level characteristics explained ≈3% of the total variance in running performance. Of the total variance explained for the individual level, 56.4% was associated with male sex (β = -54.98; < 0.001), age (β = 1.09; < 0.001), body mass index (β = 6.86; < 0.001), economic status (β = 6.23; = 0.003), the perception of the natural environment (β = 7.58; = 0.02), training frequency (β = -16.64; < 0.001), and weekly volume (β = -0.30; < 0.001). At the state level, only athletics events presented a positive and significant influence on performance. There is a significant role of the environment on the explanation of running performance variability, and given the diversity across states, environmental variables should not be neglected, as they are relevant to the exploration of other variables possibly related to running performance.

Keywords

References

  1. J Physiol. 2017 May 1;595(9):2949-2954 [PMID: 28028816]
  2. J Sports Sci. 2006 Apr;24(4):415-22 [PMID: 16492605]
  3. Int J Environ Res Public Health. 2020 Jan 20;17(2): [PMID: 31968680]
  4. BMC Sports Sci Med Rehabil. 2016 Aug 26;8(1):26 [PMID: 27570626]
  5. Br J Sports Med. 2012 Jun;46(8):555-61 [PMID: 22535537]
  6. Int J Environ Res Public Health. 2020 Mar 27;17(7): [PMID: 32230999]
  7. Int J Behav Nutr Phys Act. 2014 May 13;11:62 [PMID: 24885978]
  8. Med Sport Sci. 2016;61:15-28 [PMID: 27287074]
  9. J Sports Sci. 2006 Oct;24(10):1065-73 [PMID: 17115521]
  10. Chin J Physiol. 2018 Mar 12;61(2):85-91 [PMID: 29526077]
  11. Scand J Med Sci Sports. 2018 Mar;28(3):1304-1313 [PMID: 29117452]
  12. Int J Environ Res Public Health. 2019 May 24;16(10): [PMID: 31137635]
  13. Rev Salud Publica (Bogota). 2011 Apr;13(2):219-28 [PMID: 22030880]
  14. Eur J Clin Nutr. 2019 Feb;73(2):215-224 [PMID: 30287933]
  15. J Hum Sport Exerc. 2020 Jun;15(2):355-366 [PMID: 38050475]
  16. Int J Environ Res Public Health. 2020 Apr 25;17(9): [PMID: 32344832]
  17. Front Sports Act Living. 2020 Jan 15;1:70 [PMID: 33344993]
  18. J Sports Sci. 2014;32(6):524-32 [PMID: 24191965]
  19. Nutrition. 2019 May;61:1-7 [PMID: 30677531]
  20. J Sci Med Sport. 2020 Feb;23(2):182-188 [PMID: 31704026]
  21. PLoS One. 2014 Feb 25;9(2):e90183 [PMID: 24587266]
  22. J Sports Sci. 2015;33(2):136-44 [PMID: 24916998]
  23. Iran Red Crescent Med J. 2016 Mar 27;18(3):e21072 [PMID: 27247781]
  24. BMC Public Health. 2019 Apr 2;19(1):366 [PMID: 30940104]
  25. PLoS One. 2012;7(5):e37407 [PMID: 22649525]
  26. Int J Environ Res Public Health. 2020 Mar 26;17(7): [PMID: 32225026]
  27. J Strength Cond Res. 2017 Aug;31(8):2189-2207 [PMID: 28731980]
  28. J Musculoskelet Neuronal Interact. 2020 Mar 3;20(1):94-100 [PMID: 32131373]
  29. Int J Sports Physiol Perform. 2019 Sep 1;14(8):1013-1014 [PMID: 31484158]
  30. J Strength Cond Res. 2021 Sep 1;35(9):2525-2531 [PMID: 31045681]
  31. Res Sports Med. 2020 Jan-Mar;28(1):121-137 [PMID: 30889965]

MeSH Term

Body Mass Index
Brazil
Female
Humans
Male
Motivation
Running
Surveys and Questionnaires

Word Cloud

Created with Highcharts 10.0.0=β0performance<001variablesrunningrelatedenvironmentBrazilianindexhumandevelopmentgivendifferentamongstatesassociatedcomprisedsexagetrainingfrequencyenvironmentalstateathleticseventsMultilevelexplainedtotalvariancelevel6significantecologicalmodeltheoryhighlightsbehaviorresultinteractionderivedlevelscomprisingdirectlysubjectsGivenpurposestudyestablishwhetherrunners'mayvaryfactorsdifferencesample1151runners618%mencompletedonlinequestionnaireprovidinginformationbiologicalheightweightpacevolume/weekmotivationsociodemographicplaceresidencewageaspectsperceptionsinfluencespracticeInformationobtainedofficialinstitutesHDIviolenceanalysisconductedHLMsoftwareState-levelcharacteristics≈3%individual564%male-5498109bodymass86economicstatus23003perceptionnatural75802-1664weeklyvolume-030presentedpositiveinfluenceroleexplanationvariabilitydiversityacrossneglectedrelevantexplorationpossiblyRunningPerformanceVariabilityRunnersDifferentStates:Approachmultilevelmodelingpredictors

Similar Articles

Cited By