3D Imaging and Quantitative Characterization of Mouse Capillary Coronary Network Architecture.

Nabil Nicolas, Etienne Roux
Author Information
  1. Nabil Nicolas: Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France. ORCID
  2. Etienne Roux: Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France. ORCID

Abstract

Characterization of the cardiac capillary network structure is of critical importance to understand the normal coronary functional properties and coronary microvascular diseases. The aim of our study was to establish an accessible methodology for 3D imaging and 3D processing to quantitatively characterize the capillary coronary network architecture in mice. Experiments were done on C57BL/6J mice. 3D imaging was performed by light sheet microscopy and confocal microscopy on iDISCO+ optical cleared hearts after labelling of the capillary endothelium by lectin injection. 3D images were processed with the open source software ImageJ. Non-visual image segmentation was based of the frequency distribution of the voxel greyscale values, followed by skeletonization and distance mapping. Capillary networks in left and right ventricles and septum were characterized by the volume network density, the fractal dimension, the number of segments and nodes and their ratio, the total network length, and the average length, diameter, and tortuosity of the segments. Scale-dependent parameter values can be impacted by the resolution limit of the 3D imaging technique. The proposed standardized methodology for 3D image processing is easily accessible for a biologist in terms of investment and difficulty level, and allows the quantification of the 3D capillary architecture and its statistical comparison in different conditions.

Keywords

References

  1. Front Physiol. 2019 Mar 26;10:233 [PMID: 30971935]
  2. J Clin Med. 2020 Sep 06;9(9): [PMID: 32899944]
  3. Kidney Int. 1992 Nov;42(5):1079-85 [PMID: 1453595]
  4. PLoS One. 2012;7(7):e41148 [PMID: 22815946]
  5. Histochem Cell Biol. 2015 Feb;143(2):225-34 [PMID: 25534591]
  6. Bone. 2010 Dec;47(6):1076-9 [PMID: 20817052]
  7. PLoS One. 2017 Mar 2;12(3):e0171033 [PMID: 28253274]
  8. Circulation. 1991 Jul;84(1):412-23 [PMID: 2060112]
  9. J Cereb Blood Flow Metab. 2017 Oct;37(10):3355-3367 [PMID: 28350253]
  10. Circ Res. 2006 Aug 4;99(3):315-22 [PMID: 16825578]
  11. J Am Coll Cardiol. 2018 Nov 27;72(21):2625-2641 [PMID: 30466521]
  12. J Vasc Res. 2012;49(3):185-97 [PMID: 22433458]
  13. Cell. 2016 Jun 16;165(7):1789-1802 [PMID: 27238021]
  14. Microvasc Res. 1983 Jan;25(1):68-84 [PMID: 6835100]
  15. Cardiovasc Res. 1980 Aug;14(8):469-75 [PMID: 6449288]
  16. Bioinformatics. 2013 Jul 15;29(14):1840-1 [PMID: 23681123]
  17. Am J Physiol. 1961 Apr;200:746-50 [PMID: 13748094]
  18. JACC Basic Transl Sci. 2017 Dec;2(6):770-789 [PMID: 29333506]
  19. Nat Commun. 2019 May 24;10(1):2312 [PMID: 31127113]
  20. Biotechnol Bioeng. 2019 Oct;116(10):2742-2763 [PMID: 31282993]

Word Cloud

Created with Highcharts 10.0.03DcapillarynetworkcoronaryimagingprocessingmicroscopyimageCharacterizationaccessiblemethodologyarchitecturemicelightsheetopticalvaluesCapillarysegmentslengthcardiacstructurecriticalimportanceunderstandnormalfunctionalpropertiesmicrovasculardiseasesaimstudyestablishquantitativelycharacterizeExperimentsdoneC57BL/6JperformedconfocaliDISCO+clearedheartslabellingendotheliumlectininjectionimagesprocessedopensourcesoftwareImageJNon-visualsegmentationbasedfrequencydistributionvoxelgreyscalefollowedskeletonizationdistancemappingnetworksleftrightventriclesseptumcharacterizedvolumedensityfractaldimensionnumbernodesratiototalaveragediametertortuosityScale-dependentparametercanimpactedresolutionlimittechniqueproposedstandardizedeasilybiologisttermsinvestmentdifficultylevelallowsquantificationstatisticalcomparisondifferentconditionsImagingQuantitativeMouseCoronaryNetworkArchitectureclearing

Similar Articles

Cited By (5)