Identifying Glycemic Variability in Diabetes Patient Cohorts and Evaluating Disease Outcomes.

Martin C Nwadiugwu, Dhundy R Bastola, Christian Haas, Doug Russell
Author Information
  1. Martin C Nwadiugwu: Department of Biomedical Informatics, University of Nebraska at Omaha, Omaha, NE 68182, USA. ORCID
  2. Dhundy R Bastola: Department of Biomedical Informatics, University of Nebraska at Omaha, Omaha, NE 68182, USA.
  3. Christian Haas: Department of Information Systems and Quantitative Analysis, University of Nebraska at Omaha, Omaha, NE 68182, USA.
  4. Doug Russell: Think Whole Person Healthcare, Omaha, NE 68106, USA.

Abstract

Glycemic variability (GV) is an obstacle to effective blood glucose control and an autonomous risk factor for diabetes complications. We, therefore, explored sample data of patients with diabetes mellitus who maintained better amplitude of glycemic fluctuations and compared their disease outcomes with groups having poor control. A retrospective study was conducted using electronic data of patients having hemoglobin A1C (HbA1c) values with five recent time points from Think Whole Person Healthcare (TWPH). The control variability grid analysis (CVGA) plot and coefficient of variability (CV) were used to identify and cluster glycemic fluctuation. We selected important variables using LASSO. Chi-Square, Fisher's exact test, Bonferroni chi-Square adjusted residual analysis, and multivariate Kruskal-Wallis tests were used to evaluate eventual disease outcomes. Patients with very high CV were strongly associated ( < 0.05) with disorders of lipoprotein ( = 0.0014), fluid, electrolyte, and acid-base balance ( = 0.0032), while those with low CV were statistically significant for factors influencing health status such as screening for other disorders ( = 0.0137), long-term (current) drug therapy ( = 0.0019), and screening for malignant neoplasms ( = 0.0072). Reducing glycemic variability may balance alterations in electrolytes and reduce differences in lipid profiles, which may assist in strategies for managing patients with diabetes mellitus.

Keywords

References

  1. Singapore Med J. 2010 Aug;51(8):616-22 [PMID: 20848057]
  2. Diabetes. 2013 May;62(5):1405-8 [PMID: 23613566]
  3. Crit Care. 2014 Apr 30;18(2):R86 [PMID: 24886864]
  4. Medicine (Baltimore). 2019 Jul;98(29):e16317 [PMID: 31335679]
  5. Biochem Med (Zagreb). 2013;23(2):143-9 [PMID: 23894860]
  6. Diabetes Technol Ther. 2014 Oct;16(10):644-52 [PMID: 24956070]
  7. JAMA. 2006 Apr 12;295(14):1707-8 [PMID: 16609094]
  8. PLoS One. 2019 Mar 6;14(3):e0213258 [PMID: 30840682]
  9. Diabetes. 2014 Jul;63(7):2188-95 [PMID: 24962915]
  10. Med Sci (Basel). 2016 Apr 01;4(2): [PMID: 29083371]
  11. Diabetes Care. 2015 Aug;38(8):1610-4 [PMID: 26207054]
  12. Diabetes Technol Ther. 2017 Aug;19(8):443-445 [PMID: 28817341]
  13. J Diabetes Sci Technol. 2009 Jul 01;3(4):668-71 [PMID: 20144310]
  14. PLoS Biol. 2018 Jul 24;16(7):e2005143 [PMID: 30040822]
  15. Am J Prev Med. 2013 Sep;45(3):253-61 [PMID: 23953350]
  16. J Aging Res. 2020 Jun 29;2020:6759521 [PMID: 32676209]
  17. J Diabetes Sci Technol. 2018 Jan;12(1):105-113 [PMID: 28569077]
  18. PLoS One. 2017 Dec 20;12(12):e0188709 [PMID: 29261690]
  19. Clin Geriatr Med. 2015 Feb;31(1):17-27, vii [PMID: 25453298]
  20. Diabetes Ther. 2016 Jun;7(2):203-19 [PMID: 27056202]
  21. Diabetes Care. 2016 Apr;39(4):502-10 [PMID: 27208366]
  22. Diabetes Technol Ther. 2011 Nov;13(11):1077-80 [PMID: 21815751]
  23. Front Public Health. 2021 Jan 18;8:582234 [PMID: 33537273]
  24. Diabetes Res Clin Pract. 2018 Apr;138:271-281 [PMID: 29496507]
  25. J Diabetes Sci Technol. 2012 Sep 01;6(5):1087-93 [PMID: 23063034]
  26. Acta Haematol. 2004;112(3):126-8 [PMID: 15345893]
  27. Endocrinol Metab Clin North Am. 2013 Jun;42(2):333-47 [PMID: 23702405]
  28. Diabetes. 2013 May;62(5):1398-404 [PMID: 23613565]
  29. Diabetes Technol Ther. 2017 Sep;19(9):498-506 [PMID: 28771387]
  30. Dtsch Arztebl Int. 2014 Jan 31;111(5):69-81; quiz 82 [PMID: 24612534]
  31. Diabetes Care. 2017 Jul;40(7):832-838 [PMID: 28039172]
  32. Diabetes Care. 2011 Feb;34(2):518-23 [PMID: 21270207]
  33. PLoS One. 2016 Mar 15;11(3):e0151543 [PMID: 26978661]
  34. J Diabetes Sci Technol. 2008 Jul;2(4):630-5 [PMID: 19885239]
  35. Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E385-94 [PMID: 19996389]
  36. Am J Clin Nutr. 2016 Sep;104(3):566-75 [PMID: 27510538]
  37. J Gen Intern Med. 2014 Feb;29(2):388-94 [PMID: 24002631]
  38. BMC Public Health. 2011 Oct 04;11:761 [PMID: 21970577]
  39. Front Public Health. 2021 Jan 25;8:600427 [PMID: 33569370]

Word Cloud

Created with Highcharts 10.0.00variability=diabetesglycemiccontrolpatientsmellitusCVGlycemicdatadiseaseoutcomesusingHbA1canalysisuseddisordersbalancescreeningmayGVobstacleeffectivebloodglucoseautonomousriskfactorcomplicationsthereforeexploredsamplemaintainedbetteramplitudefluctuationscomparedgroupspoorretrospectivestudyconductedelectronichemoglobinA1CvaluesfiverecenttimepointsThinkWholePersonHealthcareTWPHgridCVGAplotcoefficientidentifyclusterfluctuationselectedimportantvariablesLASSOChi-SquareFisher'sexacttestBonferronichi-SquareadjustedresidualmultivariateKruskal-WallistestsevaluateeventualPatientshighstronglyassociated<05lipoprotein0014fluidelectrolyteacid-base0032lowstatisticallysignificantfactorsinfluencinghealthstatus0137long-termcurrentdrugtherapy0019malignantneoplasms0072ReducingalterationselectrolytesreducedifferenceslipidprofilesassiststrategiesmanagingIdentifyingVariabilityDiabetesPatientCohortsEvaluatingDiseaseOutcomescomorbidity

Similar Articles

Cited By