Direct and Indirect Electrooxidation of Glycerol to Value-Added Products.

Michael Guschakowski, Uwe Schröder
Author Information
  1. Michael Guschakowski: Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
  2. Uwe Schröder: Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany. ORCID

Abstract

In this work, different approaches for the direct and indirect electrooxidation of glycerol, a by-product of oleochemistry and biodiesel production, for the synthesis of value-added products and of intermediates for biofuel/electrofuel production, were investigated and compared. For the direct electrooxidation, metallic catalysts were used, whose surfaces were modified by promoters or second catalysts. Bi-modified Pt electrodes (Pt Bi /C) served as model systems for promoter-supported electrocatalysis, whereas IrO -modified RuO electrodes were studied as catalyst combinations, which were compared under acidic conditions with the respective monometallic catalysts (Pt/C, RuO /Ti, IrO /Ti). Furthermore, inorganic halide mediators (chloride, bromide, iodide) and organic nitroxyl mediators (4-oxo-2,2,6,6-tetramethyl-piperidin-1-oxyl and 4-acetamido-2,2,6,6-tetramethyl-piperidin-1-oxyl) were evaluated for indirect electrooxidation. These different approaches were discussed regarding selectivity, conversion, and coulombic efficiency of the electrochemical glycerol oxidation.

Keywords

References

  1. ChemSusChem. 2021 Dec 6;14(23):5216-5225 [PMID: 33945223]
  2. Angew Chem Int Ed Engl. 2018 May 14;57(20):5594-5619 [PMID: 29292849]
  3. Angew Chem Int Ed Engl. 2018 May 22;57(21):6018-6041 [PMID: 29359378]
  4. Org Biomol Chem. 2020 Jul 22;18(28):5315-5333 [PMID: 32638806]
  5. J Org Chem. 2018 Jul 20;83(14):7323-7330 [PMID: 29182282]
  6. Chem Rev. 2018 May 9;118(9):4834-4885 [PMID: 29707945]
  7. Environ Sci Technol. 2015 Oct 6;49(19):11292-302 [PMID: 26370517]
  8. ChemSusChem. 2017 Aug 10;10(15):3105-3110 [PMID: 28643864]
  9. ChemSusChem. 2012 Feb 13;5(2):326-31 [PMID: 22337651]
  10. Chem Sci. 2020 May 20;11(46):12386-12400 [PMID: 34123227]
  11. Chem Rev. 2017 Nov 8;117(21):13230-13319 [PMID: 28991454]
  12. Chem Rev. 2007 Jun;107(6):2411-502 [PMID: 17535020]
  13. J Am Chem Soc. 2015 Nov 25;137(46):14751-7 [PMID: 26505317]
  14. Chem Soc Rev. 2014 Apr 21;43(8):2492-521 [PMID: 24500279]
  15. RSC Adv. 2018 Mar 19;8(20):10818-10827 [PMID: 35541545]
  16. J Am Chem Soc. 2015 Dec 30;137(51):16179-86 [PMID: 26635089]
  17. Water Res. 2011 May;45(10):3205-14 [PMID: 21496862]
  18. ChemSusChem. 2012 Nov;5(11):2106-24 [PMID: 23112136]
  19. Acc Chem Res. 2020 Mar 17;53(3):561-574 [PMID: 32049487]
  20. Front Chem. 2019 Feb 25;7:100 [PMID: 30873403]
  21. J Org Chem. 2007 Jun 8;72(12):4504-9 [PMID: 17488040]
  22. Angew Chem Int Ed Engl. 2010 Sep 17;49(39):6998-7001 [PMID: 20715242]

Grants

  1. /Deutsche Forschungsgemeinschaft
  2. EXC 2163/1/German Research Foundation
  3. 390881007/Sustainable and Energy Efficient Aviation

Word Cloud

Created with Highcharts 10.0.0electrooxidationglycerolcatalystsdifferentapproachesdirectindirectproductioncomparedPtelectrodesIrORuO/Timediators266-tetramethyl-piperidin-1-oxylelectrochemicaloxidationworkby-productoleochemistrybiodieselsynthesisvalue-addedproductsintermediatesbiofuel/electrofuelinvestigatedmetallicusedwhosesurfacesmodifiedpromoterssecondBi-modifiedBi/Cservedmodelsystemspromoter-supportedelectrocatalysiswhereas-modifiedstudiedcatalystcombinationsacidicconditionsrespectivemonometallicPt/CFurthermoreinorganichalidechloridebromideiodideorganicnitroxyl4-oxo-24-acetamido-2evaluateddiscussedregardingselectivityconversioncoulombicefficiencyDirectIndirectElectrooxidationGlycerolValue-AddedProductsbiofuelselectrochemistrypromoter

Similar Articles

Cited By