Innate immune sensing of coronavirus and viral evasion strategies.

Yusuke Kasuga, Baohui Zhu, Kyoung-Jin Jang, Ji-Seung Yoo
Author Information
  1. Yusuke Kasuga: Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan. ORCID
  2. Baohui Zhu: Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan. ORCID
  3. Kyoung-Jin Jang: Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, 27478, Republic of Korea. jangkj@konkuk.ac.kr.
  4. Ji-Seung Yoo: Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan. jiseungy@pop.med.hokudai.ac.jp. ORCID

Abstract

The innate immune system is the first line of the host defense program against pathogens and harmful substances. Antiviral innate immune responses can be triggered by multiple cellular receptors sensing viral components. The activated innate immune system produces interferons (IFNs) and cytokines that perform antiviral functions to eliminate invading viruses. Coronaviruses are single-stranded, positive-sense RNA viruses that have a broad range of animal hosts. Coronaviruses have evolved multiple means to evade host antiviral immune responses. Successful immune evasion by coronaviruses may enable the viruses to adapt to multiple species of host organisms. Coronavirus transmission from zoonotic hosts to humans has caused serious illnesses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease-2019 (COVID-19), resulting in global health and economic crises. In this review, we summarize the current knowledge of the mechanisms underlying host sensing of and innate immune responses against coronavirus invasion, as well as host immune evasion strategies of coronaviruses.

References

  1. Bedford, J. et al. COVID-19: towards controlling of a pandemic. Lancet 395, 1015–1018 (2020). [PMID: 32197103]
  2. Fung, T. S. & Liu, D. X. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73, 529–557 (2019). [PMID: 31226023]
  3. Tse, L. V., Meganck, R. M., Graham, R. L. & Baric, R. S. The current and future state of vaccines, antivirals and gene therapies against emerging coronaviruses. Front. Microbiol. 11, 658 (2020). [PMID: 32390971]
  4. Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261 (2016). [PMID: 27578435]
  5. Thiel, V. et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305–2315 (2003). [PMID: 12917450]
  6. Angelini, M. M., Akhlaghpour, M., Neuman, B. W. & Buchmeier, M. J. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio https://doi.org/10.1128/mBio.00524-13 (2013).
  7. Subissi, L. et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl Acad. Sci. USA 111, E3900–E3909 (2014). [PMID: 25197083]
  8. Snijder, E. J., Decroly, E. & Ziebuhr, J. The nonstructural proteins directing coronavirus rna synthesis and processing. Adv. Virus Res. 96, 59–126 (2016). [PMID: 27712628]
  9. Eckerle, L. D., Lu, X., Sperry, S. M., Choi, L. & Denison, M. R. High fidelity of murine hepatitis virus replication is decreased in Nsp14 exoribonuclease mutants. J. Virol. 81, 12135–12144 (2007). [PMID: 17804504]
  10. Ivanov, K. A. & Ziebuhr, J. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5’-triphosphatase activities. J. Virol. 78, 7833–7838 (2004). [PMID: 15220459]
  11. Chen, Y. et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-O-methylation by Nsp16/Nsp10 protein complex. PLoS Pathog. 7, e1002294 (2011). [PMID: 22022266]
  12. Chen, Y. et al. Functional screen reveals SARS coronavirus nonstructural protein Nsp14 as a novel cap N7 methyltransferase. Proc. Natl Acad. Sci. USA 106, 3484–3489 (2009). [PMID: 19208801]
  13. Michel, C. J., Mayer, C., Poch, O. & Thompson, J. D. Characterization of accessory genes in coronavirus genomes. Virol. J. 17, 131 (2020). [PMID: 32854725]
  14. Hartenian, E. et al. The molecular virology of coronaviruses. J. Biol. Chem. 295, 12910–12934 (2020). [PMID: 32661197]
  15. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010). [PMID: 20303872]
  16. Krieg, A. M. AIMing 2 defend against intracellular pathogens. Nat. Immunol. 11, 367–369 (2010). [PMID: 20404848]
  17. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). [PMID: 23258413]
  18. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004). [PMID: 15208624]
  19. Geijtenbeek, T. B. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009). [PMID: 19521399]
  20. O’Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors - redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013). [PMID: 23681101]
  21. Kieser, K. J. & Kagan, J. C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol. 17, 376–390 (2017). [PMID: 28461704]
  22. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006). [PMID: 16625202]
  23. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005). [PMID: 16116171]
  24. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008). [PMID: 18591409]
  25. Hornung, V. et al. 5’-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006). [PMID: 17038590]
  26. Goubau, D. et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’-diphosphates. Nature 514, 372–375 (2014). [PMID: 25119032]
  27. Züst, R. et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011). [PMID: 21217758]
  28. Devarkar, S. C. et al. Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl Acad. Sci. USA 113, 596–601 (2016). [PMID: 26733676]
  29. Yoo, J. S., Kato, H. & Fujita, T. Sensing viral invasion by RIG-I like receptors. Curr. Opin. Microbiol. 20, 131–138 (2014). [PMID: 24968321]
  30. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015). [PMID: 25789684]
  31. Stanifer, M. L., Pervolaraki, K. & Boulant, S. Differential regulation of type I and type III interferon signaling. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20061445 (2019).
  32. Li, K. et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 9, e1003124 (2013). [PMID: 23358889]
  33. Amini-Bavil-Olyaee, S. et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 13, 452–464 (2013). [PMID: 23601107]
  34. Spence, J. S. et al. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 15, 259–268 (2019). [PMID: 30643282]
  35. Gariano, G. R. et al. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog. 8, e1002498 (2012). [PMID: 22291595]
  36. Pindel, A. & Sadler, A. The role of protein kinase R in the interferon response. J. Interferon Cytokine Res. 31, 59–70 (2011). [PMID: 21166592]
  37. Hui, D. J., Bhasker, C. R., Merrick, W. C. & Sen, G. C. Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi. J. Biol. Chem. 278, 39477–39482 (2003). [PMID: 12885778]
  38. Li, Y. et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc. Natl Acad. Sci. USA 113, 2241–2246 (2016). [PMID: 26858407]
  39. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008). [PMID: 18200009]
  40. Li, J., Liu, Y. & Zhang, X. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J. Virol. 84, 6472–6482 (2010). [PMID: 20427526]
  41. Zalinger, Z. B., Elliott, R., Rose, K. M. & Weiss, S. R. MDA5 is critical to host defense during infection with murine coronavirus. J. Virol. 89, 12330–12340 (2015). [PMID: 26423942]
  42. Hackbart, M., Deng, X. & Baker, S. C. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc. Natl Acad. Sci. USA 117, 8094–8103 (2020). [PMID: 32198201]
  43. Zhao, X. et al. Activation of C-type lectin receptor and RIG-I-like receptors contributes to proinflammatory response in Middle East respiratory syndrome coronavirus-infected macrophages. J. Infect. Dis. 221, 647–659 (2020). [PMID: 31562757]
  44. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell https://doi.org/10.1016/j.cell.2020.04.026 (2020). [DOI: 10.1016/j.cell.2020.04.026]
  45. Park, A., Iwasaki, A. & Type, I. and type III interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020). [PMID: 32464097]
  46. Hagemeijer, M. C., Vonk, A. M., Monastyrska, I., Rottier, P. J. & de Haan, C. A. Visualizing coronavirus RNA synthesis in time by using click chemistry. J. Virol. 86, 5808–5816 (2012). [PMID: 22438542]
  47. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science https://doi.org/10.1126/science.abd4570 (2020). [DOI: 10.1126/science.abd4570]
  48. Totura, A. L. et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 6, e00638–00615 (2015). [PMID: 26015500]
  49. Khanolkar, A. et al. Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice. J. Virol. 83, 8946–8956 (2009). [PMID: 19553337]
  50. Cervantes-Barragan, L. et al. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109, 1131–1137 (2007). [PMID: 16985170]
  51. Scheuplein, V. A. et al. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J. Virol. 89, 3859–3869 (2015). [PMID: 25609809]
  52. van der Made, C. I. et al. Presence of genetic variants among young men with severe COVID-19. JAMA https://doi.org/10.1001/jama.2020.13719 (2020). [DOI: 10.1001/jama.2020.13719]
  53. Chang, Y. J., Liu, C. Y., Chiang, B. L., Chao, Y. C. & Chen, C. C. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. J. Immunol. 173, 7602–7614 (2004). [PMID: 15585888]
  54. Dosch, S. F., Mahajan, S. D. & Collins, A. R. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res. 142, 19–27 (2009). [PMID: 19185596]
  55. Wang, Y. & Liu, L. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. mBio 7, e01872–01815 (2016). [PMID: 26861016]
  56. Yoo, J. S. et al. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog. 10, e1004012 (2014). [PMID: 24651521]
  57. Onomoto, K. et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE 7, e43031 (2012). [PMID: 22912779]
  58. Birdwell, L. D. et al. Activation of RNase L by murine coronavirus in myeloid cells is dependent on basal OAS gene expression and independent of virus-induced interferon. J. Virol. 90, 3160–3172 (2016). [PMID: 26739051]
  59. Deng, X. et al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc. Natl Acad. Sci. USA 114, E4251–E4260 (2017). [PMID: 28484023]
  60. Rabouw, H. H. et al. Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLoS Pathog. 12, e1005982 (2016). [PMID: 27783669]
  61. Siu, K. L. et al. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J. Virol. 88, 4866–4876 (2014). [PMID: 24522921]
  62. Menachery, V. D. et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity. J. Virol. 88, 4251–4264 (2014). [PMID: 24478444]
  63. Mesel-Lemoine, M. et al. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J. Virol. 86, 7577–7587 (2012). [PMID: 22553325]
  64. Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-00459-7 (2020). [DOI: 10.1038/s41579-020-00459-7]
  65. Lokugamage, K. G., Narayanan, K., Huang, C. & Makino, S. Severe acute respiratory syndrome coronavirus protein Nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J. Virol. 86, 13598–13608 (2012). [PMID: 23035226]
  66. Thoms, M. et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 369, 1249–1255 (2020). [PMID: 32680882]
  67. Huang, C. et al. SARS coronavirus Nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to Nsp1-induced RNA cleavage. PLoS Pathog. 7, e1002433 (2011). [PMID: 22174690]
  68. Gomez, G. N., Abrar, F., Dodhia, M. P., Gonzalez, F. G. & Nag, A. SARS coronavirus protein Nsp1 disrupts localization of Nup93 from the nuclear pore complex. Biochem. Cell Biol. 97, 758–766 (2019). [PMID: 30943371]
  69. Wathelet, M. G., Orr, M., Frieman, M. B. & Baric, R. S. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of Nsp1 and rational design of an attenuated strain. J. Virol. 81, 11620–11633 (2007). [PMID: 17715225]
  70. Lei, X. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 11, 3810 (2020). [PMID: 32733001]
  71. Xia, H. et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33, 108234 (2020). [PMID: 32979938]
  72. Devaraj, S. G. et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282, 32208–32221 (2007). [PMID: 17761676]
  73. Frieman, M., Ratia, K., Johnston, R. E., Mesecar, A. D. & Baric, R. S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol. 83, 6689–6705 (2009). [PMID: 19369340]
  74. Clementz, M. A. et al. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol. 84, 4619–4629 (2010). [PMID: 20181693]
  75. Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature https://doi.org/10.1038/s41586-020-2601-5 (2020). [DOI: 10.1038/s41586-020-2601-5]
  76. Yuan, L. et al. p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J. Biol. Chem. 290, 3172–3182 (2015). [PMID: 25505178]
  77. Klemm, T. et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. https://doi.org/10.15252/embj.2020106275 (2020).
  78. Hagemeijer, M. C. et al. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology 458–459, 125–135 (2014). [PMID: 24928045]
  79. Zhu, X. et al. Porcine deltacoronavirus Nsp5 antagonizes type i interferon signaling by cleaving STAT2. J. Virol. https://doi.org/10.1128/JVI.00003-17 (2017).
  80. Zhu, X. et al. Porcine deltacoronavirus Nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology 502, 33–38 (2017). [PMID: 27984784]
  81. Zhu, X. et al. Porcine deltacoronavirus Nsp5 cleaves dcp1a to decrease its antiviral activity. J. Virol. https://doi.org/10.1128/JVI.02162-19 (2020).
  82. te Velthuis, A. J., van den Worm, S. H. & Snijder, E. J. The SARS-coronavirus Nsp7+Nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 40, 1737–1747 (2012).
  83. Ziwei Yang, et al. Suppression of MDA5-mediated antiviral immune responses by NSP8 of SARS-CoV-2. bioRxiv https://doi.org/10.1101/2020.08.12.247767 (2020)..
  84. Ivanov, K. A. et al. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78, 5619–5632 (2004). [PMID: 15140959]
  85. Shu, T. et al. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol. Sin. 35, 321–329 (2020). [PMID: 32500504]
  86. Ma, Y. et al. Structural basis and functional analysis of the SARS coronavirus Nsp14-Nsp10 complex. Proc. Natl Acad. Sci. USA 112, 9436–9441 (2015). [PMID: 26159422]
  87. Krafcikova, P., Silhan, J., Nencka, R. & Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 11, 3717 (2020). [PMID: 32709887]
  88. Minakshi, R. et al. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS ONE 4, e8342 (2009). [PMID: 20020050]
  89. Freundt, E. C. et al. The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J. Virol. 84, 1097–1109 (2010). [PMID: 19889773]
  90. Ren, Y. et al. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol. Immunol. 17, 881–883 (2020). [PMID: 32555321]
  91. Siu, K. L. et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 33, 8865–8877 (2019). [PMID: 31034780]
  92. Freundt, E. C., Yu, L., Park, E., Lenardo, M. J. & Xu, X. N. Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein. J. Virol. 83, 6631–6640 (2009). [PMID: 19403678]
  93. Konno, Y. et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep. 32, 108185 (2020). [PMID: 32941788]
  94. Frieman, M. et al. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J. Virol. 81, 9812–9824 (2007). [PMID: 17596301]
  95. Addetia, A. et al. SARS-CoV-2 ORF6 disrupts nucleocytoplasmic transport throughinteractions with Rae1 and Nup98. bioRxiv https://doi.org/10.1101/2020.08.03.234559 (2020). bioRxiv. [DOI: 10.1101/2020.08.03.234559]
  96. Miorin, L. et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl Acad. Sci. USA 117, 28344–28354 (2020). [PMID: 33097660]
  97. Yuan, X. et al. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 346, 74–85 (2006). [PMID: 16303160]
  98. Tan, Y. X. et al. Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein. J. Virol. 81, 6346–6355 (2007). [PMID: 17428862]
  99. Taylor, J. K. et al. Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J. Virol. 89, 11820–11833 (2015). [PMID: 26378163]
  100. Kopecky-Bromberg, S. A., Martinez-Sobrido, L. & Palese, P. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J. Virol. 80, 785–793 (2006). [PMID: 16378980]
  101. Shi, C. S. et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol. 193, 3080–3089 (2014). [PMID: 25135833]
  102. Jiang, H. W. et al. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol. Immunol. 17, 998–1000 (2020). [PMID: 32728199]
  103. Lu, X., Pan, J., Tao, J. & Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42, 37–45 (2011). [PMID: 20976535]
  104. Mu, J. et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov. 6, 65 (2020). [PMID: 32953130]
  105. Hu, Y. et al. The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type i interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J. Virol. https://doi.org/10.1128/JVI.02143-16 (2017).
  106. Siu, K. L. et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J. Biol. Chem. 284, 16202–16209 (2009). [PMID: 19380580]
  107. Siu, K. L., Chan, C. P., Kok, K. H., Chiu-Yat Woo, P. & Jin, D. Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol. Immunol. 11, 141–149 (2014). [PMID: 24509444]
  108. Zheng, Y. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct. Target. Ther. 5, 299 (2020). [PMID: 33372174]
  109. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020). [PMID: 33264547]
  110. Tomar, B., Anders, H. J., Desai, J. & Mulay, S. R. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells https://doi.org/10.3390/cells9061383 (2020).
  111. Mazzoni, A. et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest. 130, 4694–4703 (2020). [PMID: 32463803]
  112. Cifaldi, L. et al. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 67, 3037–3046 (2015). [PMID: 26251193]
  113. Wang, C. et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 57, 102833 (2020). [PMID: 32574956]
  114. Wu, D. & Yang, X. O. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. J. Microbiol Immunol. Infect. 53, 368–370 (2020). [PMID: 32205092]
  115. De Biasi, S. et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 11, 3434 (2020). [PMID: 32632085]
  116. Huang, K. J. et al. An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol. 75, 185–194 (2005). [PMID: 15602737]
  117. Zhou, J. et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J. Infect. Dis. 209, 1331–1342 (2014). [PMID: 24065148]
  118. Fan, E. et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir. Med. 8, 816–821 (2020). [PMID: 32645311]
  119. Ryabkova, V. A., Churilov, L. P. & Shoenfeld, Y. Influenza infection, SARS, MERS and COVID-19: cytokine storm - the common denominator and the lessons to be learned. Clin. Immunol. 223, 108652 (2021). [PMID: 33333256]
  120. Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science https://doi.org/10.1126/science.abd2985 (2020). [DOI: 10.1126/science.abd2985]
  121. Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science https://doi.org/10.1126/science.abd3072 (2020). [DOI: 10.1126/science.abd3072]
  122. Overacre-Delgoffe, A. E. et al. Interferon-γ drives T. Cell 169, 1130–1141.e1111 (2017). [PMID: 28552348]
  123. Gladstone, D. E., Kim, B. S., Mooney, K., Karaba, A. H. & D’Alessio, F. R. Regulatory T cells for treating patients with COVID-19 and acute respiratory distress syndrome: Two case reports. Ann. Intern. Med. https://doi.org/10.7326/L20-0681 (2020). [DOI: 10.7326/L20-0681]
  124. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020). [PMID: 32284615]

Grants

  1. 19K23837/MEXT | Japan Society for the Promotion of Science (JSPS)
  2. 2020R1I1A2073517/National Research Foundation of Korea (NRF)

MeSH Term

Animals
COVID-19
Coronaviridae
Coronavirus Infections
Humans
Immune Evasion
Immunity, Innate
Interferons
SARS-CoV-2

Chemicals

Interferons

Word Cloud

Created with Highcharts 10.0.0immunehostinnateresponsesmultiplesensingvirusesevasioncoronavirussystemviralantiviralCoronaviruseshostscoronavirusesrespiratorysyndromestrategiesfirstlinedefenseprogrampathogensharmfulsubstancesAntiviralcantriggeredcellularreceptorscomponentsactivatedproducesinterferonsIFNscytokinesperformfunctionseliminateinvadingsingle-strandedpositive-senseRNAbroadrangeanimalevolvedmeansevadeSuccessfulmayenableadaptspeciesorganismsCoronavirustransmissionzoonotichumanscausedseriousillnessessevereacuteSARSMiddleEastMERSdisease-2019COVID-19resultingglobalhealtheconomiccrisesreviewsummarizecurrentknowledgemechanismsunderlyinginvasionwellInnate

Similar Articles

Cited By