Aerial survey estimates of polar bears and their tracks in the Chukchi Sea.

Paul B Conn, Vladimir I Chernook, Erin E Moreland, Irina S Trukhanova, Eric V Regehr, Alexander N Vasiliev, Ryan R Wilson, Stanislav E Belikov, Peter L Boveng
Author Information
  1. Paul B Conn: Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America. ORCID
  2. Vladimir I Chernook: Ecological Center, Autonomous Non-Commercial Organization, Saint-Petersburg, Russia.
  3. Erin E Moreland: Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America.
  4. Irina S Trukhanova: North Pacific Wildlife Consulting, LLC, Seattle, Washington, United States of America. ORCID
  5. Eric V Regehr: Marine Mammals Management, United States Fish and Wildlife Service, Anchorage, Alaska, United States of America.
  6. Alexander N Vasiliev: Ecological Center, Autonomous Non-Commercial Organization, Saint-Petersburg, Russia.
  7. Ryan R Wilson: Marine Mammals Management, United States Fish and Wildlife Service, Anchorage, Alaska, United States of America.
  8. Stanislav E Belikov: All-Russian Research Institute for Nature Protection (Federal State Budgetary Institution), Moscow, Russia.
  9. Peter L Boveng: Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, United States of America.

Abstract

Polar bears are of international conservation concern due to climate change but are difficult to study because of low densities and an expansive, circumpolar distribution. In a collaborative U.S.-Russian effort in spring of 2016, we used aerial surveys to detect and estimate the abundance of polar bears on sea ice in the Chukchi Sea. Our surveys used a combination of thermal imagery, digital photography, and human observations. Using spatio-temporal statistical models that related bear and track densities to physiographic and biological covariates (e.g., sea ice extent, resource selection functions derived from satellite tags), we predicted abundance and spatial distribution throughout our study area. Estimates of 2016 abundance ([Formula: see text]) ranged from 3,435 (95% CI: 2,300-5,131) to 5,444 (95% CI: 3,636-8,152) depending on the proportion of bears assumed to be missed on the transect line during Russian surveys (g(0)). Our point estimates are larger than, but of similar magnitude to, a recent estimate for the period 2008-2016 ([Formula: see text]; 95% CI 1,522-5,944) derived from an integrated population model applied to a slightly smaller area. Although a number of factors (e.g., equipment issues, differing platforms, low sample sizes, size of the study area relative to sampling effort) required us to make a number of assumptions to generate estimates, it establishes a useful lower bound for abundance, and suggests high spring polar bear densities on sea ice in Russian waters south of Wrangell Island. With future improvements, we suggest that springtime aerial surveys may represent a plausible avenue for studying abundance and distribution of polar bears and their prey over large, remote areas.

References

  1. J Appl Ecol. 2017 Oct;54(5):1534-1543 [PMID: 29081540]
  2. Ecol Appl. 2020 Jun;30(4):e02071 [PMID: 31925853]
  3. Proc Biol Sci. 2016 Aug 17;283(1836): [PMID: 27534959]
  4. Sci Rep. 2018 Nov 14;8(1):16780 [PMID: 30429493]
  5. PLoS One. 2015 Oct 23;10(10):e0141416 [PMID: 26496358]
  6. Ecol Appl. 2015 Apr;25(3):634-51 [PMID: 26214910]
  7. Glob Chang Biol. 2018 Jan;24(1):410-423 [PMID: 28994242]
  8. Glob Chang Biol. 2014 Jan;20(1):76-88 [PMID: 23913506]
  9. Biometrics. 2006 Jun;62(2):372-8 [PMID: 16918901]
  10. Biol Lett. 2016 Dec;12(12): [PMID: 27928000]
  11. R Soc Open Sci. 2016 Jan 27;3(1):150561 [PMID: 26909183]
  12. Biometrics. 2010 Mar;66(1):169-77 [PMID: 19432793]
  13. Ecol Appl. 2016 Jul;26(5):1302-1320 [PMID: 27755745]

MeSH Term

Animals
Arctic Regions
Female
Male
Population Density
Spatio-Temporal Analysis
Ursidae

Word Cloud

Created with Highcharts 10.0.0bearsabundancesurveyspolarstudydensitiesdistributionseaicegarea95%estimatesloweffortspring2016usedaerialestimateChukchiSeabearederived[Formula:seetext]3CI:RussiannumberPolarinternationalconservationconcerndueclimatechangedifficultexpansivecircumpolarcollaborativeUS-RussiandetectcombinationthermalimagerydigitalphotographyhumanobservationsUsingspatio-temporalstatisticalmodelsrelatedtrackphysiographicbiologicalcovariatesextentresourceselectionfunctionssatellitetagspredictedspatialthroughoutEstimatesranged4352300-51315444636-8152dependingproportionassumedmissedtransectline0pointlargersimilarmagnituderecentperiod2008-2016CI1522-5944integratedpopulationmodelappliedslightlysmallerAlthoughfactorsequipmentissuesdifferingplatformssamplesizessizerelativesamplingrequiredusmakeassumptionsgenerateestablishesusefullowerboundsuggestshighwaterssouthWrangellIslandfutureimprovementssuggestspringtimemayrepresentplausibleavenuestudyingpreylargeremoteareasAerialsurveytracks

Similar Articles

Cited By