Detection of selection signatures in farmed coho salmon (Oncorhynchus kisutch) using dense genome-wide information.

M E López, M I Cádiz, E B Rondeau, B F Koop, J M Yáñez
Author Information
  1. M E López: Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden.
  2. M I Cádiz: Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
  3. E B Rondeau: Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
  4. B F Koop: Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
  5. J M Yáñez: Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. jmayanez@uchile.cl.

Abstract

Animal domestication and artificial selection give rise to gradual changes at the genomic level in populations. Subsequent footprints of selection, known as selection signatures or selective sweeps, have been traced in the genomes of many animal livestock species by exploiting variation in linkage disequilibrium patterns and/or reduction of genetic diversity. Domestication of most aquatic species is recent in comparison with land animals, and salmonids are one of the most important fish species in aquaculture. Coho salmon (Oncorhynchus kisutch), cultivated primarily in Chile, has been subjected to breeding programs to improve growth, disease resistance traits, and flesh color. This study aimed to identify selection signatures that may be involved in adaptation to culture conditions and traits of productive interest. To do so, individuals of two domestic populations cultured in Chile were genotyped with 200 thousand SNPs, and analyses were conducted using iHS, XP-EHH and CLR. Several signatures of selection on different chromosomal regions were detected across both populations. Some of the identified regions under selection contained genes such anapc2, alad, chp2 and myn, which have been previously associated with body weight in Atlantic salmon, or sec24d and robo1, which have been associated with resistance to Piscirickettsia salmonis in coho salmon. Findings in our study can contribute to an integrated genome-wide map of selection signatures, to help identify the genetic mechanisms of phenotypic diversity in coho salmon.

References

  1. Genes Brain Behav. 2008 Mar;7(2):224-34 [PMID: 17680805]
  2. Genome Res. 2005 Nov;15(11):1566-75 [PMID: 16251466]
  3. Comp Funct Genomics. 2012;2012:628204 [PMID: 23326209]
  4. Genetics. 1989 Nov;123(3):597-601 [PMID: 2599369]
  5. G3 (Bethesda). 2018 Mar 28;8(4):1183-1194 [PMID: 29440129]
  6. Anim Genet. 2017 Dec;48(6):698-703 [PMID: 29044715]
  7. Front Genet. 2019 May 22;10:498 [PMID: 31191613]
  8. Evol Appl. 2020 Aug 28;13(10):2807-2820 [PMID: 33294024]
  9. Genetics. 2019 Nov;213(3):759-770 [PMID: 31537622]
  10. PLoS One. 2012;7(9):e44751 [PMID: 23028602]
  11. Sci Rep. 2016 Feb 25;6:22157 [PMID: 26912479]
  12. Front Genet. 2018 Apr 09;9:119 [PMID: 29686696]
  13. Genetics. 2013 Mar;193(3):929-41 [PMID: 23307896]
  14. Nature. 2015 Dec 17;528(7582):405-8 [PMID: 26536110]
  15. Mol Biol Evol. 2013 Sep;30(9):2224-34 [PMID: 23777627]
  16. Heredity (Edinb). 2015 Nov;115(5):426-36 [PMID: 25990878]
  17. Sci Rep. 2015 Jul 01;5:11729 [PMID: 26130263]
  18. Mol Ecol Resour. 2017 Jan;17(1):78-90 [PMID: 27863062]
  19. Nature. 2007 Oct 11;449(7163):689-94 [PMID: 17851529]
  20. Front Genet. 2020 Apr 03;11:264 [PMID: 32318091]
  21. Fly (Austin). 2017 Oct 2;11(4):277-283 [PMID: 28586288]
  22. Genet Sel Evol. 2018 Nov 19;50(1):57 [PMID: 30449276]
  23. Nature. 2007 Oct 18;449(7164):913-8 [PMID: 17943131]
  24. BMC Genomics. 2019 Feb 15;20(1):139 [PMID: 30770720]
  25. Mar Genomics. 2016 Feb;25:33-37 [PMID: 26614614]
  26. Sci Rep. 2015 Sep 16;5:14168 [PMID: 26373374]
  27. PLoS Genet. 2015 Nov 09;11(11):e1005628 [PMID: 26551894]
  28. PLoS Biol. 2006 Mar;4(3):e72 [PMID: 16494531]
  29. Gen Comp Endocrinol. 2010 Feb 1;165(3):483-515 [PMID: 19442666]
  30. Nat Genet. 1999 Jun;22(2):164-7 [PMID: 10369258]
  31. Nature. 2002 Oct 24;419(6909):832-7 [PMID: 12397357]
  32. Sci Rep. 2019 Apr 24;9(1):6487 [PMID: 31019228]
  33. Science. 2010 Feb 12;327(5967):883-6 [PMID: 20056855]
  34. J Fish Biol. 2017 Jul;91(1):175-194 [PMID: 28516498]
  35. Nature. 2010 Mar 25;464(7288):587-91 [PMID: 20220755]
  36. Mol Ecol. 2013 Nov;22(22):5577-93 [PMID: 24730037]
  37. PLoS One. 2014 Mar 26;9(3):e91672 [PMID: 24670947]
  38. BMC Genet. 2018 May 18;19(1):31 [PMID: 29776331]
  39. Mar Genomics. 2016 Apr;26:41-50 [PMID: 26723557]
  40. Mol Ecol. 2018 Jun;27(12):2725-2741 [PMID: 29729657]
  41. Theor Appl Genet. 1968 Jun;38(6):226-31 [PMID: 24442307]
  42. Am J Hum Genet. 2009 Feb;84(2):210-23 [PMID: 19200528]
  43. R Soc Open Sci. 2016 Jun 01;3(6):160107 [PMID: 27429770]
  44. Nat Rev Genet. 2018 Apr;19(4):220-234 [PMID: 29335644]
  45. Evol Appl. 2018 Dec 07;12(1):137-156 [PMID: 30622641]
  46. Evol Appl. 2015 Jan;8(1):93-107 [PMID: 25667605]
  47. Front Genet. 2019 Oct 01;10:901 [PMID: 31632437]
  48. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):185-205 [PMID: 20008396]
  49. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  50. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  51. Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19529-36 [PMID: 23151514]
  52. Genome Res. 2005 Nov;15(11):1468-76 [PMID: 16251456]
  53. Genetics. 2005 Jul;170(3):1401-10 [PMID: 15911584]
  54. Nat Commun. 2014 Oct 27;5:5168 [PMID: 25346277]
  55. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  56. Evol Appl. 2016 Dec 29;10(3):276-296 [PMID: 28250812]
  57. Nat Rev Genet. 2004 Mar;5(3):202-12 [PMID: 14970822]
  58. BMC Genomics. 2015 Nov 18;16:969 [PMID: 26582102]
  59. Front Genet. 2018 Dec 14;9:649 [PMID: 30619473]
  60. Sci Rep. 2020 Jul 13;10(1):11514 [PMID: 32661317]

MeSH Term

Animals
Aquaculture
Fish Diseases
Genome-Wide Association Study
Genotype
Humans
Oncorhynchus kisutch
Phenotype
Piscirickettsia
Polymorphism, Single Nucleotide

Word Cloud

Created with Highcharts 10.0.0selectionsignaturessalmonpopulationsspeciescohogeneticdiversityOncorhynchuskisutchChileresistancetraitsstudyidentifyusingregionsassociatedgenome-wideAnimaldomesticationartificialgiverisegradualchangesgenomiclevelSubsequentfootprintsknownselectivesweepstracedgenomesmanyanimallivestockexploitingvariationlinkagedisequilibriumpatternsand/orreductionDomesticationaquaticrecentcomparisonlandanimalssalmonidsoneimportantfishaquacultureCohocultivatedprimarilysubjectedbreedingprogramsimprovegrowthdiseasefleshcoloraimedmayinvolvedadaptationcultureconditionsproductiveinterestindividualstwodomesticculturedgenotyped200thousandSNPsanalysesconductediHSXP-EHHCLRSeveraldifferentchromosomaldetectedacrossidentifiedcontainedgenesanapc2aladchp2mynpreviouslybodyweightAtlanticsec24drobo1PiscirickettsiasalmonisFindingscancontributeintegratedmaphelpmechanismsphenotypicDetectionfarmeddenseinformation

Similar Articles

Cited By