Anti-Hyperuricemic and Nephroprotective Effects of Dihydroberberine in Potassium Oxonate- and Hypoxanthine-Induced Hyperuricemic Mice.

Lieqiang Xu, Guoshu Lin, Qiuxia Yu, Qiaoping Li, Liting Mai, Juanjuan Cheng, Jianhui Xie, Yuhong Liu, Ziren Su, Yucui Li
Author Information
  1. Lieqiang Xu: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  2. Guoshu Lin: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  3. Qiuxia Yu: State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
  4. Qiaoping Li: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  5. Liting Mai: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  6. Juanjuan Cheng: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  7. Jianhui Xie: State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
  8. Yuhong Liu: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  9. Ziren Su: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
  10. Yucui Li: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.

Abstract

Phellodendri Chinese Cortex has long been used to treat hyperuricemia and gout. Berberine (BBR), its characteristic ingredient, has also been shown to be effective in alleviating monosodium urate crystals-triggered gout inflammation and . Dihydroberberine (DHB) is a hydrogenated derivative of BBR that showed improved efficacy on many metabolic disorders. However, its anti-hyperuricemia effect remains underexplored. In the present work, the hypouricemic and renoprotective effects of DHB on hyperuricemic mice were investigated. The hyperuricemic mice model was induced by intraperitoneal injection of potassium oxonate (PO, 300 mg/kg) combined with intragastric administration of hypoxanthine (HX, 300 mg/kg) for 7 days. Different dosages of DHB (25, 50 mg/kg), BBR (50 mg/kg) or febuxostat (Feb, 5 mg/kg) were orally given to mice 1 h after modeling. The molecular docking results showed that DHB effectively inhibited xanthine oxidase (XOD) by binding with its active site. , DHB exhibited significant XOD inhibitory activity (IC value, 34.37 μM). The results showed that DHB had obvious hypouricemic and renoprotective effects in hyperuricemic mice. It could not only lower the uric acid and XOD levels in serum, but also suppress the activities of XOD and adenosine deaminase (ADA) in the liver. Furthermore, DHB noticeably down-regulated the renal mRNA and protein expression of XOD. Besides, DHB remarkably and dose-dependently ameliorated renal damage, as evidenced by considerably reducing serum creatinine and blood urea nitrogen (BUN) levels, inflammatory cytokine (TNF-α, IL-1β, IL-6 and IL-18) levels and restoring kidney histological deteriorations. Further mechanistic investigation showed that DHB distinctly down-regulated renal mRNA and protein levels of URAT1, GLUT9, NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like (ASC), caspase-1 and IL-1β. Our study revealed that DHB had outstanding hypouricemic and renoprotective effects via suppressing XOD, URAT1, GLUT9 and NLRP3 inflammasome activation in the kidney.

Keywords

References

  1. PLoS One. 2012;7(6):e39738 [PMID: 22761883]
  2. Arthritis Rheumatol. 2019 Jun;71(6):991-999 [PMID: 30618180]
  3. Front Pharmacol. 2020 Mar 17;11:289 [PMID: 32256360]
  4. Am J Kidney Dis. 2015 Dec;66(6):984-92 [PMID: 26209544]
  5. Evid Based Complement Alternat Med. 2017;2017:7674240 [PMID: 29358971]
  6. Food Chem Toxicol. 2013 Dec;62:397-406 [PMID: 24025684]
  7. Eur J Pharmacol. 2015 Jan 15;747:59-70 [PMID: 25499818]
  8. J Ethnopharmacol. 2010 Mar 2;128(1):107-15 [PMID: 20051260]
  9. Sci Rep. 2015 Jul 15;5:12155 [PMID: 26174047]
  10. Food Funct. 2015 Sep;6(9):3045-55 [PMID: 26201407]
  11. Phytomedicine. 2019 Jan;52:272-283 [PMID: 30599908]
  12. Int Immunopharmacol. 2017 Mar;44:26-37 [PMID: 28068647]
  13. J Ethnopharmacol. 2016 Dec 24;194:403-411 [PMID: 27717908]
  14. Nat Rev Rheumatol. 2019 Jul;15(7):413-426 [PMID: 31118497]
  15. Mar Drugs. 2019 Jun 10;17(6): [PMID: 31185695]
  16. Biomed Pharmacother. 2019 Jan;109:47-56 [PMID: 30396091]
  17. Int Immunopharmacol. 2019 Oct;75:105802 [PMID: 31401380]
  18. Sci Rep. 2017 Jan 13;7:39884 [PMID: 28084303]
  19. J Clin Invest. 1989 Feb;83(2):585-92 [PMID: 2464001]
  20. N Engl J Med. 2005 Dec 8;353(23):2450-61 [PMID: 16339094]
  21. Diabetes. 2008 May;57(5):1414-8 [PMID: 18285556]
  22. Trends Immunol. 2003 Sep;24(9):512-7 [PMID: 12967676]
  23. Med Sci Monit. 2017 Mar 04;23:1129-1140 [PMID: 28258276]
  24. Biomed Res Int. 2016;2016:2503703 [PMID: 27689075]
  25. Rheumatology (Oxford). 2009 May;48 Suppl 2:ii15-ii19 [PMID: 19447778]
  26. Front Pharmacol. 2018 Jan 15;8:996 [PMID: 29379442]
  27. Expert Opin Drug Saf. 2019 Apr;18(4):261-271 [PMID: 30915866]
  28. Springerplus. 2013 Oct 17;2:541 [PMID: 24255841]
  29. Environ Sci Pollut Res Int. 2018 Feb;25(5):4896-4903 [PMID: 29204934]
  30. J Huazhong Univ Sci Technolog Med Sci. 2014 Apr;34(2):186-189 [PMID: 24710930]
  31. Curr Pharm Des. 2013;19(14):2606-14 [PMID: 23116398]
  32. Eur J Immunol. 2016 Jan;46(1):204-11 [PMID: 26449770]
  33. Peptides. 2018 Sep;107:45-53 [PMID: 30077718]
  34. J Pharm Pharmacol. 2020 Apr;72(4):551-560 [PMID: 31910301]
  35. J Ethnopharmacol. 2004 Aug;93(2-3):325-30 [PMID: 15234772]
  36. Food Chem Toxicol. 2014 Jul;69:175-81 [PMID: 24751971]
  37. J Transl Med. 2014 Nov 26;12:326 [PMID: 25425200]
  38. Planta Med. 2014 Jan;80(1):39-47 [PMID: 24338552]
  39. J Hypertens. 2019 May;37(5):878-883 [PMID: 30620339]
  40. J Ethnopharmacol. 2011 Mar 24;134(2):234-42 [PMID: 21182922]
  41. PLoS One. 2013;8(2):e56864 [PMID: 23437258]
  42. Chin J Integr Med. 2015 Feb;21(2):132-8 [PMID: 24893659]
  43. Glob Health Res Policy. 2020 Nov 30;5(1):52 [PMID: 33292806]
  44. Phytomedicine. 2019 Jun;59:152772 [PMID: 31005813]
  45. Stem Cells Int. 2016;2016:1365257 [PMID: 26783398]
  46. Food Funct. 2018 Nov 14;9(11):5778-5790 [PMID: 30327809]
  47. Biomed Pharmacother. 2016 Oct;83:975-988 [PMID: 27522260]
  48. Biomed Pharmacother. 2016 Dec;84:1930-1936 [PMID: 27863839]
  49. Lancet. 2016 Oct 22;388(10055):2039-2052 [PMID: 27112094]

Word Cloud

Created with Highcharts 10.0.0DHBXODshowedmicelevelsBBRhypouricemicrenoprotectiveeffectshyperuricemicrenalNLRP3hyperuricemiagoutalsourateinflammationDihydroberberine300 mg/kg50 mg/kgresultsxanthineoxidaseserumdown-regulatedmRNAproteinIL-1βkidneyURAT1GLUT9inflammasomePhellodendriChineseCortexlongusedtreatBerberinecharacteristicingredientshowneffectivealleviatingmonosodiumcrystals-triggeredhydrogenatedderivativeimprovedefficacymanymetabolicdisordersHoweveranti-hyperuricemiaeffectremainsunderexploredpresentworkinvestigatedmodelinducedintraperitonealinjectionpotassiumoxonatePOcombinedintragastricadministrationhypoxanthineHX7 daysDifferentdosages25febuxostatFeb5 mg/kgorallygiven1 hmodelingmoleculardockingeffectivelyinhibitedbindingactivesiteexhibitedsignificantinhibitoryactivityICvalue3437 μMobviousloweruricacidsuppressactivitiesadenosinedeaminaseADAliverFurthermorenoticeablyexpressionBesidesremarkablydose-dependentlyameliorateddamageevidencedconsiderablyreducingcreatininebloodureanitrogenBUNinflammatorycytokineTNF-αIL-6IL-18restoringhistologicaldeteriorationsmechanisticinvestigationdistinctlyNOD-likereceptor3apoptosis-associatedspeck-likeASCcaspase-1studyrevealedoutstandingviasuppressingactivationAnti-HyperuricemicNephroprotectiveEffectsPotassiumOxonate-Hypoxanthine-InducedHyperuricemicMicedihydroberberinetransporters

Similar Articles

Cited By