Does the Brain Function as a Quantum Phase Computer Using Phase Ternary Computation?

Andrew S Johnson, William Winlow
Author Information
  1. Andrew S Johnson: Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italy.
  2. William Winlow: Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italy.

Abstract

Here we provide evidence that the fundamental basis of nervous communication is derived from a pressure pulse/soliton capable of computation with sufficient temporal precision to overcome any processing errors. Signalling and computing within the nervous system are complex and different phenomena. Action potentials are plastic and this makes the action potential peak an inappropriate fixed point for neural computation, but the action potential threshold is suitable for this purpose. Furthermore, neural models timed by spiking neurons operate below the rate necessary to overcome processing error. Using retinal processing as our example, we demonstrate that the contemporary theory of nerve conduction based on cable theory is inappropriate to account for the short computational time necessary for the full functioning of the retina and by implication the rest of the brain. Moreover, cable theory cannot be instrumental in the propagation of the action potential because at the activation-threshold there is insufficient charge at the activation site for successive ion channels to be electrostatically opened. Deconstruction of the brain neural network suggests that it is a member of a group of Quantum phase computers of which the Turing machine is the simplest: the brain is another based upon phase ternary computation. However, attempts to use Turing based mechanisms cannot resolve the coding of the retina or the computation of intelligence, as the technology of Turing based computers is fundamentally different. We demonstrate that that coding in the brain neural network is quantum based, where the quanta have a temporal variable and a phase-base variable enabling phase ternary computation as previously demonstrated in the retina.

Keywords

References

  1. Brain Res. 1981 Sep 14;220(2):408-15 [PMID: 7284766]
  2. Curr Opin Neurobiol. 2018 Aug;51:37-44 [PMID: 29525575]
  3. Neural Netw. 2020 Feb;122:253-272 [PMID: 31726331]
  4. Brain Res Bull. 1998 Jul 15;46(5):367-80 [PMID: 9739000]
  5. Sci Rep. 2017 Aug 21;7(1):8877 [PMID: 28827727]
  6. Cold Spring Harb Perspect Biol. 2013 Dec 30;8(2):a016824 [PMID: 24379319]
  7. Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9790-5 [PMID: 15994235]
  8. J R Soc Interface. 2007 Apr 22;4(13):193-206 [PMID: 17251143]
  9. Nature. 1977 Jul 21;268(5617):263-5 [PMID: 196209]
  10. J Physiol. 2018 Oct;596(19):4729-4752 [PMID: 30016551]
  11. Light Sci Appl. 2018 Dec 12;7:107 [PMID: 30564313]
  12. Nat Commun. 2018 Sep 12;9(1):3691 [PMID: 30209249]
  13. Front Cell Neurosci. 2018 Jun 26;12:187 [PMID: 29997481]
  14. Front Cell Neurosci. 2013 Nov 05;7:162 [PMID: 24223536]
  15. PLoS Biol. 2014 Sep 09;12(9):e1001944 [PMID: 25203314]
  16. Neuron. 2014 Apr 16;82(2):460-73 [PMID: 24742466]
  17. Nat Rev Neurosci. 2007 Jun;8(6):451-65 [PMID: 17514198]
  18. Front Physiol. 2018 Jun 25;9:779 [PMID: 29988539]
  19. Neuroscience. 1990;39(2):395-403 [PMID: 2087263]
  20. J Neurophysiol. 2011 Sep;106(3):1411-23 [PMID: 21676935]
  21. Comp Biochem Physiol A Comp Physiol. 1989;93(4):861-76 [PMID: 2570671]
  22. Comp Biochem Physiol A Comp Physiol. 1985;82(4):971-6 [PMID: 14577415]
  23. J Physiol. 1990 Feb;421:247-62 [PMID: 2348393]
  24. Curr Opin Neurobiol. 2014 Aug;27:47-52 [PMID: 24632375]
  25. Elife. 2016 Nov 25;5: [PMID: 27885985]
  26. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]

Word Cloud

Created with Highcharts 10.0.0computationbasedphasepotentialneuralbrainprocessingactiontheoryretinaTuringternarynervoustemporalovercomedifferentinappropriatenecessaryerrorUsingretinaldemonstratecablenetworkQuantumcomputerscodingquantumvariablePhaseprovideevidencefundamentalbasiscommunicationderivedpressurepulse/solitoncapablesufficientprecisionerrorsSignallingcomputingwithinsystemcomplexphenomenaActionpotentialsplasticmakespeakfixedpointthresholdsuitablepurposeFurthermoremodelstimedspikingneuronsoperaterateexamplecontemporarynerveconductionaccountshortcomputationaltimefullfunctioningimplicationrestMoreoverinstrumentalpropagationactivation-thresholdinsufficientchargeactivationsitesuccessiveionchannelselectrostaticallyopenedDeconstructionsuggestsmembergroupmachinesimplest:anotheruponHoweverattemptsusemechanismsresolveintelligencetechnologyfundamentallyquantaphase-baseenablingpreviouslydemonstratedBrainFunctionComputerTernaryComputation?actionredactionplasticitymodelsynchronizationtiming

Similar Articles

Cited By