The Role of the Lateral Habenula in Inhibitory Learning from Reward Omission.

Rodrigo Sosa, Jesús Mata-Luévanos, Mario Buenrostro-Jáuregui
Author Information
  1. Rodrigo Sosa: Universidad Panamericana, Escuela de Pedagogía, 49 Álvaro del Portillo, Ciudad Granja, Zapopan, 45010, Mexico rsosas@up.edu.mx mario.buenrostro@ibero.mx. ORCID
  2. Jesús Mata-Luévanos: Universidad Panamericana, Escuela de Pedagogía, 49 Álvaro del Portillo, Ciudad Granja, Zapopan, 45010, Mexico.
  3. Mario Buenrostro-Jáuregui: Universidad Panamericana, Escuela de Pedagogía, 49 Álvaro del Portillo, Ciudad Granja, Zapopan, 45010, Mexico rsosas@up.edu.mx mario.buenrostro@ibero.mx.

Abstract

The lateral habenula (LHb) is a phylogenetically primitive brain structure that plays a key role in learning to inhibit distinct responses to specific stimuli. This structure is activated by primary aversive stimuli, cues predicting an imminent aversive event, unexpected reward omissions, and cues associated with the omission of an expected reward. The most widely described physiological effect of LHb activation is acutely suppressing midbrain dopaminergic signaling. However, recent studies have identified multiple means by which the LHb promotes this effect as well as other mechanisms of action. These findings reveal the complex nature of LHb circuitry. The present paper reviews the role of this structure in learning from reward omission. We approach this topic from the perspective of computational models of behavioral change that account for inhibitory learning to frame key findings. Such findings are drawn from recent behavioral neuroscience studies that use novel brain imaging, stimulation, ablation, and reversible inactivation techniques. Further research and conceptual work are needed to clarify the nature of the mechanisms related to updating motivated behavior in which the LHb is involved. As yet, there is little understanding of whether such mechanisms are parallel or complementary to the well-known modulatory function of the more recently evolved prefrontal cortex.

Keywords

References

  1. Neuropsychopharmacology. 2017 Apr;42(5):1103-1112 [PMID: 28025973]
  2. Neuroscience. 2011 Dec 29;199:205-12 [PMID: 22015928]
  3. J Neurosci. 2003 Nov 12;23(32):10402-10 [PMID: 14614099]
  4. Learn Mem. 2020 Sep 15;27(10):429-440 [PMID: 32934096]
  5. Neurosci Lett. 2019 May 29;702:71-76 [PMID: 30503912]
  6. Psychol Rev. 1980 Nov;87(6):532-52 [PMID: 7443916]
  7. Learn Behav. 2012 Mar;40(1):34-41 [PMID: 21877176]
  8. J Exp Psychol Anim Learn Cogn. 2014 Jul;40(3):335-54 [PMID: 25545981]
  9. Eur J Neurosci. 2003 Jan;17(2):280-6 [PMID: 12542664]
  10. Behav Neurosci. 2014 Dec;128(6):644-53 [PMID: 25285456]
  11. Psychol Rev. 2014 Jul;121(3):337-66 [PMID: 25090423]
  12. Nat Rev Neurosci. 2010 Jul;11(7):503-13 [PMID: 20559337]
  13. J Neurophysiol. 2006 Nov;96(5):2175-6 [PMID: 16885518]
  14. Front Neurorobot. 2014 Jan 31;8:4 [PMID: 24550821]
  15. J Neurosci. 2008 Apr 9;28(15):4028-36 [PMID: 18400902]
  16. Neuron. 2020 Mar 4;105(5):921-933.e5 [PMID: 31948733]
  17. Neuron. 2020 Mar 4;105(5):766-768 [PMID: 32135088]
  18. Cell. 2016 Feb 11;164(4):617-31 [PMID: 26871628]
  19. Synapse. 2009 Oct;63(10):895-906 [PMID: 19582784]
  20. Elife. 2015 Feb 25;4: [PMID: 25714923]
  21. J Neurosci. 2018 Oct 10;38(41):8822-8830 [PMID: 30181136]
  22. J Exp Psychol Anim Learn Cogn. 2014 Jan;40(1):12-21 [PMID: 24893105]
  23. J Neurosci. 2016 Nov 9;36(45):11482-11488 [PMID: 27911751]
  24. Elife. 2014 Dec 23;3:e04577 [PMID: 25535793]
  25. J Neurophysiol. 2010 Aug;104(2):1068-76 [PMID: 20538770]
  26. Cereb Cortex. 2000 Mar;10(3):206-19 [PMID: 10731217]
  27. Brain Res. 2001 Oct 26;917(1):118-26 [PMID: 11602236]
  28. Front Psychiatry. 2019 May 22;10:320 [PMID: 31231247]
  29. Pharmacol Biochem Behav. 2017 Nov;162:29-37 [PMID: 28843424]
  30. J Comp Neurol. 2015 Nov 1;523(16):2426-56 [PMID: 25940654]
  31. Transl Psychiatry. 2020 May 25;10(1):164 [PMID: 32451377]
  32. Neuron. 2012 Nov 21;76(4):804-12 [PMID: 23177964]
  33. Neuropsychologia. 2014 Dec;65:263-78 [PMID: 25149820]
  34. J Neurosci. 1999 Oct 15;19(20):9126-32 [PMID: 10516330]
  35. Brain Sci. 2019 Feb 26;9(3): [PMID: 30813649]
  36. Nature. 2007 Jun 28;447(7148):1111-5 [PMID: 17522629]
  37. Eur J Neurosci. 2012 Apr;35(7):1190-200 [PMID: 22487047]
  38. Perspect Behav Sci. 2018 Feb 15;42(2):291-322 [PMID: 31976436]
  39. Learn Mem. 2015 May 15;22(6):289-93 [PMID: 25979990]
  40. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):13077-13086 [PMID: 31182594]
  41. J Cogn Neurosci. 2005 Jan;17(1):51-72 [PMID: 15701239]
  42. Eur J Neurosci. 2008 Apr;27(7):1755-62 [PMID: 18380670]
  43. J Exp Psychol Anim Behav Process. 1993 Oct;19(4):342-52 [PMID: 8228833]
  44. Science. 2014 Sep 26;345(6204):1616-20 [PMID: 25258080]
  45. J Neurosci. 2020 Jun 10;40(24):4773-4787 [PMID: 32393535]
  46. J Exp Psychol Anim Learn Cogn. 2019 Oct;45(4):390-404 [PMID: 31414879]
  47. Neuron. 2016 Sep 21;91(6):1374-1389 [PMID: 27618675]
  48. Neuropsychopharmacology. 2011 Jan;36(1):98-113 [PMID: 20736991]
  49. J Neurosci. 2016 Jan 13;36(2):302-11 [PMID: 26758824]
  50. Brain Res. 2019 Oct 15;1721:146283 [PMID: 31170383]
  51. Neuron. 2008 Nov 26;60(4):720-9 [PMID: 19038227]
  52. J Comp Neurol. 2009 Apr 20;513(6):566-96 [PMID: 19235216]
  53. Handb Clin Neurol. 2019;163:317-332 [PMID: 31590738]
  54. Neuroscience. 2017 Mar 14;345:89-98 [PMID: 26876779]
  55. Neurosci Lett. 2019 Jun 11;703:184-190 [PMID: 30928477]
  56. J Physiol Paris. 2015 Feb-Jun;109(1-3):104-17 [PMID: 25636373]
  57. Nature. 2017 Apr 13;544(7649):240-244 [PMID: 28379939]
  58. Front Hum Neurosci. 2013 Nov 13;7:778 [PMID: 24294200]
  59. Front Psychiatry. 2019 Jun 12;10:371 [PMID: 31244688]
  60. J Neurosci. 2017 Nov 8;37(45):10932-10942 [PMID: 28986462]
  61. Proc Biol Sci. 2020 Nov 11;287(1938):20201234 [PMID: 33171086]
  62. J Neurosci. 2013 May 8;33(19):8159-71 [PMID: 23658156]
  63. J Exp Psychol Anim Learn Cogn. 2019 Jan;45(1):17-42 [PMID: 30604993]
  64. J Comp Physiol Psychol. 1974 Apr;86(4):616-27 [PMID: 4823236]
  65. Nat Rev Neurosci. 2020 May;21(5):277-295 [PMID: 32269316]
  66. Cereb Cortex. 2017 Dec 1;27(12):5485-5495 [PMID: 28334072]
  67. Psychol Rev. 2020 Nov;127(6):972-1021 [PMID: 32525345]
  68. Nat Commun. 2017 Oct 26;8(1):1135 [PMID: 29074844]
  69. Front Hum Neurosci. 2021 Feb 11;15:615313 [PMID: 33679345]
  70. J Exp Psychol Anim Learn Cogn. 2020 Oct;46(4):398-407 [PMID: 32718156]
  71. Neurosci Biobehav Rev. 2021 Apr;123:337-351 [PMID: 33453307]
  72. Neuroscience. 2020 Sep 15;444:136-148 [PMID: 32717296]
  73. Nature. 2018 Nov;563(7731):397-401 [PMID: 30405240]
  74. Front Hum Neurosci. 2010 May 11;4:36 [PMID: 20485575]
  75. J Exp Psychol Anim Learn Cogn. 2018 Jan;44(1):36-55 [PMID: 29323517]
  76. Psychol Res. 2015 Jul;79(4):630-49 [PMID: 24962237]
  77. Q J Exp Psychol (Hove). 2019 Feb;72(2):346-374 [PMID: 29741452]
  78. J Neurosci. 2012 Oct 10;32(41):14094-101 [PMID: 23055478]
  79. Behav Processes. 2015 May;114:63-71 [PMID: 25662745]
  80. Physiol Rev. 2021 Apr 1;101(2):611-681 [PMID: 32970967]
  81. Neuron. 2015 Sep 23;87(6):1304-1316 [PMID: 26365765]
  82. J Neurosci. 2009 Jul 1;29(26):8474-82 [PMID: 19571138]
  83. Psychol Rev. 2013 Apr;120(2):329-55 [PMID: 23586447]
  84. Curr Biol. 2019 Jan 7;29(1):51-61.e5 [PMID: 30554903]
  85. Behav Brain Res. 2017 Mar 1;320:244-254 [PMID: 27993692]
  86. Elife. 2020 Dec 21;9: [PMID: 33345774]
  87. Nat Neurosci. 2014 Jan;17(1):33-5 [PMID: 24270185]
  88. Q J Exp Psychol B. 2003 Nov;56(4):359-70 [PMID: 14578080]
  89. Nat Neurosci. 2014 Sep;17(9):1146-52 [PMID: 25157511]
  90. Epidemiol Psychiatr Sci. 2019 Aug 22;29:e52 [PMID: 31434594]
  91. Science. 1997 Mar 14;275(5306):1593-9 [PMID: 9054347]
  92. Curr Biol. 2017 Feb 20;27(4):549-555 [PMID: 28190729]
  93. Psychol Rev. 2018 Oct;125(5):822-843 [PMID: 30299142]
  94. Neuron. 2016 Jun 1;90(5):1086-99 [PMID: 27210550]
  95. Nature. 2012 Nov 8;491(7423):212-7 [PMID: 23064228]
  96. Elife. 2017 May 31;6: [PMID: 28561735]
  97. Neuron. 2019 Dec 4;104(5):987-999.e4 [PMID: 31627985]
  98. Cortex. 2020 Oct;131:103-113 [PMID: 32823130]
  99. eNeuro. 2018 Oct 25;5(5): [PMID: 30406193]
  100. J Neurosci. 1999 Jun 1;19(11):4585-94 [PMID: 10341256]

MeSH Term

Cues
Dopamine
Habenula
Mesencephalon
Reward

Chemicals

Dopamine

Word Cloud

Created with Highcharts 10.0.0LHbrewardstructurelearningmechanismsfindingsbrainkeyrolestimuliaversivecuesomissioneffectsignalingrecentstudiesnaturebehavioralinhibitorypathwaylateralhabenulaphylogeneticallyprimitiveplaysinhibitdistinctresponsesspecificactivatedprimarypredictingimminenteventunexpectedomissionsassociatedexpectedwidelydescribedphysiologicalactivationacutelysuppressingmidbraindopaminergicHoweveridentifiedmultiplemeanspromoteswellactionrevealcomplexcircuitrypresentpaperreviewsapproachtopicperspectivecomputationalmodelschangeaccountframedrawnneuroscienceusenovelimagingstimulationablationreversibleinactivationtechniquesresearchconceptualworkneededclarifyrelatedupdatingmotivatedbehaviorinvolvedyetlittleunderstandingwhetherparallelcomplementarywell-knownmodulatoryfunctionrecentlyevolvedprefrontalcortexRoleLateralHabenulaInhibitoryLearningRewardOmissionconditionedinhibitiondopaminecontrolmesocorticalmesolimbicnegativepredictionerror

Similar Articles

Cited By