Community Detection in Large-Scale Bipartite Biological Networks.

Genís Calderer, Marieke L Kuijjer
Author Information
  1. Genís Calderer: Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
  2. Marieke L Kuijjer: Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.

Abstract

Networks are useful tools to represent and analyze interactions on a large, or genome-wide scale and have therefore been widely used in biology. Many biological networks-such as those that represent regulatory interactions, drug-gene, or gene-disease associations-are of a bipartite nature, meaning they consist of two different types of nodes, with connections only forming between the different node sets. Analysis of such networks requires methodologies that are specifically designed to handle their bipartite nature. Community structure detection is a method used to identify clusters of nodes in a network. This approach is especially helpful in large-scale biological network analysis, as it can find structure in networks that often resemble a "hairball" of interactions in visualizations. Often, the communities identified in biological networks are enriched for specific biological processes and thus allow one to assign drugs, regulatory molecules, or diseases to such processes. In addition, comparison of community structures between different biological conditions can help to identify how network rewiring may lead to tissue development or disease, for example. In this mini review, we give a theoretical basis of different methods that can be applied to detect communities in bipartite biological networks. We introduce and discuss different scores that can be used to assess the quality of these community structures. We then apply a wide range of methods to a drug-gene interaction network to highlight the strengths and weaknesses of these methods in their application to large-scale, bipartite biological networks.

Keywords

References

  1. Biomed Res Int. 2014;2014:424509 [PMID: 25126556]
  2. NPJ Syst Biol Appl. 2019 Apr 23;5:15 [PMID: 31044086]
  3. PLoS Comput Biol. 2016 Sep 12;12(9):e1005033 [PMID: 27618581]
  4. Sci Adv. 2017 May 03;3(5):e1602548 [PMID: 28508065]
  5. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  6. Nucleic Acids Res. 2018 Jan 4;46(D1):D1068-D1073 [PMID: 29156001]
  7. Gigascience. 2018 Apr 1;7(4):1-31 [PMID: 29648623]
  8. Cell Rep. 2020 Jun 23;31(12):107795 [PMID: 32579922]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036102 [PMID: 17930301]
  10. BMC Bioinformatics. 2014 Jun 25;15:220 [PMID: 24965130]
  11. Sci Rep. 2018 Jul 18;8(1):10872 [PMID: 30022098]
  12. Nature. 2020 Apr;580(7803):402-408 [PMID: 32296183]
  13. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  14. Front Cell Dev Biol. 2014 Aug 19;2:38 [PMID: 25364745]
  15. Sci Rep. 2015 Nov 09;5:16361 [PMID: 26549511]
  16. Bioinformatics. 2020 Sep 15;36(18):4765-4773 [PMID: 32860050]
  17. Front Physiol. 2019 Jul 16;10:888 [PMID: 31379598]
  18. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066122 [PMID: 22304170]
  20. NPJ Syst Biol Appl. 2018 Apr 19;4:16 [PMID: 29707235]
  21. Cell Rep. 2017 Oct 24;21(4):1077-1088 [PMID: 29069589]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110 [PMID: 18999496]
  23. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82 [PMID: 16723398]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066102 [PMID: 18233893]
  25. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):36-41 [PMID: 17190818]
  26. Nat Commun. 2021 Jan 8;12(1):130 [PMID: 33420076]
  27. Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7841-E7850 [PMID: 28851834]
  28. R Soc Open Sci. 2016 Jan 20;3(1):140536 [PMID: 26909160]
  29. Nat Biotechnol. 2007 Oct;25(10):1119-26 [PMID: 17921997]
  30. Nat Rev Mol Cell Biol. 2021 Feb;22(2):96-118 [PMID: 33353982]
  31. Phys Rev E. 2016 Nov;94(5-1):052315 [PMID: 27967199]
  32. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90 [PMID: 17502601]

Word Cloud

Created with Highcharts 10.0.0biologicalnetworksnetworkdifferentanalysisbipartitecancommunityinteractionsuseddetectionmethodsNetworksrepresentregulatorydrug-genenaturenodesCommunitystructureidentifylarge-scalecommunitiesprocessesstructuresgenomicusefultoolsanalyzelargegenome-widescalethereforewidelybiologyManynetworks-suchgene-diseaseassociations-aremeaningconsisttwotypesconnectionsformingnodesetsAnalysisrequiresmethodologiesspecificallydesignedhandlemethodclustersapproachespeciallyhelpfulfindoftenresemble"hairball"visualizationsOftenidentifiedenrichedspecificthusallowoneassigndrugsmoleculesdiseasesadditioncomparisonconditionshelprewiringmayleadtissuedevelopmentdiseaseexampleminireviewgivetheoreticalbasisapplieddetectintroducediscussscoresassessqualityapplywiderangeinteractionhighlightstrengthsweaknessesapplicationDetectionLarge-ScaleBipartiteBiologicalclusteringalgorithmsdata

Similar Articles

Cited By