In Vitro Measurements of Shear-Mediated Platelet Adhesion Kinematics as Analyzed through Machine Learning.

Jawaad Sheriff, Peineng Wang, Peng Zhang, Ziji Zhang, Yuefan Deng, Danny Bluestein
Author Information
  1. Jawaad Sheriff: Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
  2. Peineng Wang: Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
  3. Peng Zhang: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
  4. Ziji Zhang: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
  5. Yuefan Deng: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.
  6. Danny Bluestein: Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA. danny.bluestein@stonybrook.edu. ORCID

Abstract

Platelet adhesion to blood vessel walls in shear flow is essential to initiating the blood coagulation cascade and prompting clot formation in vascular disease processes and prosthetic cardiovascular devices. Validation of predictive adhesion kinematics models at the single platelet level is difficult due to gaps in high resolution, dynamic morphological data or a mismatch between simulation and experimental parameters. Gel-filtered platelets were perfused at 30 dyne/cm in von Willebrand Factor (vWF)-coated microchannels, with flipping platelets imaged at high spatial and temporal resolution. A semi-unsupervised learning system (SULS), consisting of a series of convolutional neural networks, was used to segment platelet geometry, which was compared with expert-analyzed images. Resulting time-dependent rotational angles were smoothed with wavelet-denoising and shifting techniques to characterize the rotational period and quantify flipping kinematics. We observed that flipping platelets do not follow the previously-modeled modified Jefferey orbit, but are characterized by a longer lift-off and shorter reattachment period. At the juncture of the two periods, rotational velocity approached 257.48 ± 13.31 rad/s. Our SULS approach accurately segmented large numbers of moving platelet images to identify distinct adhesive kinematic characteristics which may further validate the physical accuracy of individual platelet motion in multiscale models of shear-mediated thrombosis.

Keywords

References

  1. Acad Radiol. 2004 Feb;11(2):178-89 [PMID: 14974593]
  2. J Clin Invest. 2008 Sep;118(9):3195-207 [PMID: 18725999]
  3. Blood. 2000 Nov 15;96(10):3322-8 [PMID: 11071623]
  4. Clin Hemorheol Microcirc. 2019;71(1):113-116 [PMID: 30594919]
  5. Biophys J. 2005 Feb;88(2):1432-43 [PMID: 15533923]
  6. Elife. 2020 May 12;9: [PMID: 32393438]
  7. Lab Chip. 2017 Jul 11;17(14):2426-2434 [PMID: 28627575]
  8. Clin Exp Pharmacol Physiol. 2001 May-Jun;28(5-6):355-63 [PMID: 11380506]
  9. Cell Mol Bioeng. 2019 Aug;12(4):327-343 [PMID: 31662802]
  10. Haematologica. 2013 Nov;98(11):1810-8 [PMID: 23753027]
  11. J Biomech. 2021 Mar 5;117:110275 [PMID: 33529943]
  12. Nature. 2010 Aug 19;466(7309):992-5 [PMID: 20725043]
  13. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  14. IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):929-44 [PMID: 17431294]
  15. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):950-5 [PMID: 11158576]
  16. Blood. 2006 May 1;107(9):3537-45 [PMID: 16449527]
  17. Platelets. 2021 Jan 2;32(1):54-58 [PMID: 32321340]
  18. Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021): [PMID: 24982253]
  19. PLoS Comput Biol. 2020 Mar 12;16(3):e1007716 [PMID: 32163405]
  20. J Thromb Haemost. 2009 Jul;7 Suppl 1:17-20 [PMID: 19630759]
  21. Nat Methods. 2019 Dec;16(12):1233-1246 [PMID: 31133758]
  22. Int J Numer Method Biomed Eng. 2015 Mar;31(3):e02702 [PMID: 25532469]
  23. Biophys J. 2001 Aug;81(2):799-813 [PMID: 11463626]
  24. Biophys J. 2012 Feb 8;102(3):472-82 [PMID: 22325269]
  25. Nano Lett. 2019 Mar 13;19(3):1418-1427 [PMID: 30649888]
  26. J Biomech. 2017 Jan 4;50:26-33 [PMID: 27894676]
  27. Anal Biochem. 2010 Oct 15;405(2):174-83 [PMID: 20513436]
  28. J Thromb Haemost. 2020 Oct;18(10):2701-2711 [PMID: 32662223]
  29. Nature. 2003 May 8;423(6936):190-3 [PMID: 12736689]
  30. Biomed Opt Express. 2020 Mar 05;11(4):1808-1818 [PMID: 32341849]
  31. Pathophysiol Haemost Thromb. 2005;34(6):255-62 [PMID: 16772736]
  32. Arterioscler Thromb Vasc Biol. 2006 Mar;26(3):663-9 [PMID: 16385083]
  33. Cell Mol Bioeng. 2014 Dec 1;7(4):552-574 [PMID: 25530818]
  34. Biophys J. 2019 Mar 19;116(6):1136-1151 [PMID: 30824114]
  35. J Biol Chem. 1999 Dec 17;274(51):36241-51 [PMID: 10593912]
  36. Cell. 1996 Jan 26;84(2):289-97 [PMID: 8565074]
  37. Arterioscler Thromb Vasc Biol. 2002 Feb 1;22(2):329-34 [PMID: 11834537]
  38. Haematologica. 2020 Jun;105(6):1660-1666 [PMID: 31439672]
  39. Biomech Model Mechanobiol. 2021 Jun;20(3):1013-1030 [PMID: 33782796]
  40. Comput Med Imaging Graph. 2021 Apr;89:101895 [PMID: 33798915]
  41. Blood. 2002 Jan 1;99(1):159-67 [PMID: 11756166]
  42. Ann Biomed Eng. 1998 Mar-Apr;26(2):268-77 [PMID: 9525767]
  43. Ann Biomed Eng. 2016 Apr;44(4):903-13 [PMID: 26202677]
  44. Ann Biomed Eng. 2010 Apr;38(4):1442-50 [PMID: 20135353]
  45. Biophys J. 2002 Jul;83(1):194-205 [PMID: 12080112]
  46. Biophys J. 2008 Sep;95(5):2556-74 [PMID: 18515386]
  47. J R Soc Interface. 2011 Dec 7;8(65):1760-71 [PMID: 21593027]
  48. Microcirculation. 2009 Jan;16(1):58-83 [PMID: 19191170]

Grants

  1. U01 HL131052/NHLBI NIH HHS
  2. U01 HL131052/NHLBI NIH HHS

MeSH Term

Biomechanical Phenomena
Blood Platelets
Humans
In Vitro Techniques
Machine Learning
Neural Networks, Computer
Platelet Adhesiveness
Thrombosis

Word Cloud

Created with Highcharts 10.0.0plateletPlateletadhesionplateletsflippingrotationalbloodkinematicsmodelshighresolutionlearningSULSnetworksimagesperiodorbitMachinevesselwallsshearflowessentialinitiatingcoagulationcascadepromptingclotformationvasculardiseaseprocessesprostheticcardiovasculardevicesValidationpredictivesingleleveldifficultduegapsdynamicmorphologicaldatamismatchsimulationexperimentalparametersGel-filteredperfused30dyne/cmvonWillebrandFactorvWF-coatedmicrochannelsimagedspatialtemporalsemi-unsupervisedsystemconsistingseriesconvolutionalneuralusedsegmentgeometrycomparedexpert-analyzedResultingtime-dependentanglessmoothedwavelet-denoisingshiftingtechniquescharacterizequantifyobservedfollowpreviously-modeledmodifiedJeffereycharacterizedlongerlift-offshorterreattachmentjuncturetwoperiodsvelocityapproached25748 ± 1331rad/sapproachaccuratelysegmentedlargenumbersmovingidentifydistinctadhesivekinematiccharacteristicsmayvalidatephysicalaccuracyindividualmotionmultiscaleshear-mediatedthrombosisVitroMeasurementsShear-MediatedAdhesionKinematicsAnalyzedLearningJefferyNeuralThrombosis

Similar Articles

Cited By