Catalytic Transfer Hydrogenolysis of Glycerol over Heterogeneous Catalysts: A Short Review on Mechanistic Studies.

Xi Liu, Bin Yin, Wenxiang Zhang, Xiao Yu, Yiyao Du, Siming Zhao, Guangyu Zhang, Mengyuan Liu, Hao Yan, Manuela Abbotsi-Dogbey, Saleem T Al-Absi, Sayan Yeredil, Chaohe Yang, Jian Shen, Wenjuan Yan, Xin Jin
Author Information
  1. Xi Liu: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  2. Bin Yin: College of Fisheries, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
  3. Wenxiang Zhang: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  4. Xiao Yu: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  5. Yiyao Du: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  6. Siming Zhao: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  7. Guangyu Zhang: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  8. Mengyuan Liu: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  9. Hao Yan: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  10. Manuela Abbotsi-Dogbey: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  11. Saleem T Al-Absi: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  12. Sayan Yeredil: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  13. Chaohe Yang: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  14. Jian Shen: College of Environment and Resources, Xiangtan University, No. 27 Lujiatan Road, Yuhu District, Xiangtan, Hunan Province, 411105, China.
  15. Wenjuan Yan: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China.
  16. Xin Jin: State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China. ORCID

Abstract

Catalytic transfer hydrogenolysis, using liquid H-donors in the absence of pressurized H under mild temperatures, is regarded as the most important technology to substitute traditional hydrogenation processes in industry. Despite decade development with several breakthroughs in catalyst design, the reaction mechanism involved in H generation and subsequent hydrogenolysis reactions is still under debate. In this review, transfer hydrogenolysis of glycerol, as a representative example, on metallic catalysts is revised critically with respect to surface reaction mechanism and catalyst design. The detailed reaction pathways for propanol, methanol, formic acid and ethanol for H generation have been discussed systematically. In particular, reaction mechanism for catalytic C-H cleavage, H spillover/transfer and C-O cleavage reaction steps will be critically revised with experimental and theoretical results in literature. Insights into reaction pathways, mechanism and H transfer efficiency and structure-performance relation for Pd, Cu and Ni catalysts will be provided for future development of catalyst manufacture and process development. The outcome of this work is useful for successful implementation of bio-refinery.

Keywords

References

  1.  
  2. M. Balat, G. Ayar, C. Oguzhan, H. Uluduz, U. Faiz, Energy Sources Part B 2007, 2, p.213-226;
  3. G. W. Huber, A. Corma, Angew. Chem. 2007, 46, 7184-7201;
  4. C. H. Christensen, J. Rass-Hansen, C. C. Marsden, E. Taarning, K. Egeblad, ChemSusChem 2008, 1, 283-289.
  5. A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502.
  6. M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2013, 114, 1827-1870.
  7. A. V.-H. Soares, G. Perez, F. B. Passos, Appl. Catal. B 2016, 185, 77-87.
  8.  
  9. S. Huber, R. E. Trevio, M. T. García-Cubero, G. González-Benito, Catal. Commun. 12 0-126;
  10. L. Ma, D. He, Z. Li, Catal. Commun. 2008, 9, 2489-2495;
  11. Y. Nakagawa, K. Tomishige, Catalysis Science, Technology 2011, 1;
  12. D. Sun, Y. Yamada, S. Sato, W. Ueda, Appl. Catal. B 2016, 193, 75-92.
  13.  
  14. X. Jin, B. Yin, Q. Xia, T. Fang, J. Shen, L. Kuang, C. Yang, ChemSusChem 2019, 12, 71-92;
  15. V. Chiodo, S. Freni, A. Galvagno, N. Mondello, F. Frusteri, Appl. Catal. A 2010, 381, 1-7;
  16. A. Seretis, P. Tsiakaras, Fuel Process. Technol. 2016, 142, 135-146.
  17. A. Martin, U. Armbruster, I. Gandarias, P. L. Arias, Eur. J. Lipid Sci. Technol. 2013, 115, 9-27.
  18.  
  19. E. D′Hondt, S. Van de Vyver, B. F. Sels, P. A. Jacobs, Chem. Commun. (Camb.) 2008, 6011-6012;
  20. C. Pendem, P. Gupta, N. Chaudhary, S. Singh, J. Kumar, T. Sasaki, A. Datta, R. Bal, Green Chem. 2012, 14;
  21. S. Van de Vyver, E. D′Hondt, B. F. Sels, P. A. Jacobs, in Studies in Surface Science and Catalysis, Vol. 175 (Eds.: E. M. Gaigneaux, M. Devillers, S. Hermans, P. A. Jacobs, J. A. Martens, P. Ruiz), Elsevier, 2010, pp. 771-774;
  22. V. L. Yfanti, A. A. Lemonidou, Catal. Today 2019;
  23. M. L. Barbelli, G. F. Santori, N. N. Nichio, Bioresour. Technol. 2012, 111, 500-503;
  24. T. S. de Andrade, M. M. V. M. Souza, R. L. Manfro, Renewable Energy 2020, 160, 919-930;
  25. R. Raso, L. García, J. Ruiz, M. Oliva, J. Arauzo, Appl. Catal. B 2021, 283.
  26.  
  27. X. Jin, B. Yin, Q. Xia, T. Q. Fang, J. Shen, L. Q. Kuang, C. H. Yang, ChemSusChem 2019, 12, 71-92;
  28. X. Jin, C. Zeng, W. Yan, M. Zhao, P. Bobba, H. Shi, P. S. Thapa, B. Subramaniam, R. V. Chaudhari, Appl. Catal. A 2017, 534, 46-57.
  29. M. G. Musolino, L. A. Scarpino, F. Mauriello, R. Pietropaolo, Chem. Informationsdienst 2010, 41, 1511-1513.
  30. G. Zhang, X. Jin, J. Wang, M. Liu, W. Zhang, Y. Gao, X. Luo, Q. Zhang, J. Shen, C. Yang, Ind. Eng. Chem. Res. 2020, 59, 17387-17398.
  31.  
  32. I. Gandarias, P. L. Arias, S. G. Fernandez, J. Requies, M. El Doukkali, M. B. Guemez, Catal. Today 2012, 195, 22-31;
  33. I. Gandarias, P. L. Arias, J. Requies, M. El Doukkali, M. B. Güemez, J. Catal. 2011, 282, 237-247;
  34. V. L. Yfanti, E. S. Vasiliadou, A. A. Lemonidou, Catalysis Science, Technology 2016, 6, 5415-5426;
  35. S. Xia, L. Zheng, L. Wang, P. Chen, Z. Hou, RSC Adv. 2013, 3.
  36. E. S. Vasiliadou, V. L. Yfanti, A. A. Lemonidou, Appl. Catal. B 2015, 163, 258-266.
  37.  
  38. Y. Nakagawa, M. Tamura, K. Tomishige, Res. Chem. Intermed. 2018, 44, 3879-3903;
  39. J. Wang, M. Yang, A. Wang, Chin. J. Catal. 2020, 41, 1311-1319;
  40. L. J. Liu, T. Asano, Y. Nakagawa, M. Tamura, K. Okumura, K. Tomishige, ACS Catal. 2019, 9, 10913-10930;
  41. M. Tamura, Y. Amada, S. Liu, Z. Yuan, Y. Nakagawa, K. Tomishige, J. Mol. Catal. A 2014, 388-389, 177-187;
  42. Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Appl. Catal. A 2012, 433-434, 128-134;
  43. Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Appl. Catal. B 2011, 105, 117-127.
  44.  
  45. C. L. Cai, C. H. Zhu, H. Y. Wang, H. S. Xin, Z. X. Xiu, C. G. Wang, Q. Zhang, Q. Y. Liu, L. L. Ma, Curr. Org. Chem. 2019, 23, 2180-2189;
  46. F. Mauriello, H. Ariga, M. G. Musolino, R. Pietropaolo, S. Takakusagi, K. Asakura, Appl. Catal. B 2015, 166-167, 121-131;
  47. T. Jiang, D. Kong, K. Xu, F. Cao, Applied Petrochemical Research 2015, 5, 221-229.
  48.  
  49. M. Grilc, B. Likozar, J. Levec, ChemCatChem 2016, 8, 180-191;
  50. D. L. Manuale, L. V. Santiago, G. C. Torres, J. H. Sepulveda, P. A. Torresi, C. R. Vera, J. C. Yori, J. Chem. Technol. Biotechnol. 2018, 93, 1050-1064;
  51. M. G. Musolino, L. A. Scarpino, F. Mauriello, R. Pietropaolo, Green Chem. 2009, 11;
  52. I. Gandarias, J. Requies, P. L. Arias, U. Armbruster, A. Martin, J. Catal. 2012, 290, 79-89.
  53. G. Zhang, X. Jin, Q. Zhang, Y. Cheng, X. Chen, Y. Liu, X. Feng, C. Yang, Catalysis Science, Technology 2020, 10, 4386-4395.
  54. E. Vasiliadou, A. Lemonidou, Catalysts 2014, 4, 397-413.
  55. J. Yuan, S. Li, L. Yu, Y. Liu, Y. Cao, Chin. J. Catal. 2013, 34, 2066-2074.
  56.  
  57. R. D. Cortright, R. R. Davda, J. A. Dumesic, Chem. Informationsdienst 2002, 418, 964-967;
  58. T. Sakamoto, H. Kikuchi, T. Miyao, A. Yoshida, S. Naito, Appl. Catal. A 2010, 375, 156-162;
  59. I. Coronado, M. Stekrova, L. García Moreno, M. Reinikainen, P. Simell, R. Karinen, J. Lehtonen, Biomass Bioenergy 2017, 106, 29-37;
  60. T. Sakamoto, T. Miyao, A. Yoshida, S. Naito, Int. J. Hydrogen Energy 2010, 35, 6203-6209;
  61. A. Arandia, I. Coronado, A. Remiro, A. G. Gayubo, M. Reinikainen, Int. J. Hydrogen Energy 2019, 44, 13157-13168.
  62.  
  63. Y. Xiang, X. Li, C. Lu, L. Ma, Q. Zhang, Appl. Catal. A 2010, 375, 289-294;
  64. E. Jeroro, J. M. Vohs, J. Am. Chem. Soc. 2008, 130, 10199-10207.
  65. N. Takezawa, N. Iwasa, Catal. Today 1997, 36.
  66. W. Wang, J. Gong, Frontiers of Chemical Science & Engineering 2011, 5, 2-10.
  67. L. V. Mattos, G. Jacobs, B. H. Davis, F. B. Noronha, Chem. Rev. 2012, 112, 4094-4123.
  68. G. W. Huber, S. Iborra, A. Corma, Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering, 2006.
  69.  
  70. A. Boddien, B. r Loges, F. Gartner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, J. Am. Chem. Soc. 2012, 132, 8924-8934;
  71. B. R. Loges, A. Boddien, F. Gartner, H. Junge, M. Beller, Top. Catal. 2010, 53, 902-914.
  72. D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes, J. R. H. Ross, The Biofine Process - Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks, Biorefineries-Industrial Processes and Products: Status Quo and Future Directions, 2008.
  73. N. Yi, H. Saltsburg, P. M. Flytzani-Stephanopoulos, ChemSusChem 2013, 6, 816-819.
  74. D. A. Bulushev, J. R. H. Ross, Catal. Today 2011, 163, 42-46.
  75.  
  76. D. Roy, B. Subramaniam, R. V. Chaudhari, Catal. Today 2010, 156, 31-37;
  77. A. Torres, H. Shi, B. Subramaniam, R. V. Chaudhari, ACS Sustainable Chem. Eng. 2019, 7, 11323-11333;
  78. A. Brandner, K. Lehnert, A. Bienholz, M. Lucas, P. Claus, Top. Catal. 2009, 52, 278-287;
  79. A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A. A. Lemonidou, J. A. Lercher, J. Catal. 2010, 269, 411-420;
  80. M. Chia, Y. J. Pagan-Torres, D. Hibbitts, Q. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic, J. Am. Chem. Soc. 2011, 133, 12675-12689;
  81. O. M. Daniel, A. DeLaRiva, E. L. Kunkes, A. K. Datye, J. A. Dumesic, R. J. Davis, ChemCatChem 2010, 2, 1107-1114;
  82. R. J. Davis, Abstr. Pap. Am. Chem. Soc. 2010, 239;
  83. D. D. Falcone, J. H. Hack, R. J. Davis, ChemCatChem 2016, 8, 1074-1083;
  84. D. D. Falcone, J. H. Hack, A. Y. Klyushin, A. Knop-Gericke, R. Schloegl, R. J. Davis, ACS Catal. 2015, 5, 5679-5695;
  85. E. P. Maris, R. J. Davis, J. Catal. 2007, 249, 328-337;
  86. E. P. Maris, W. C. Ketchie, M. Murayama, R. J. Davis, J. Catal. 2007, 251, 281-294;
  87. J. B. Salazar, D. D. Falcone, H. N. Pham, A. K. Datye, F. B. Passos, R. J. Davis, Appl. Catal. A 2014, 482, 137-144;
  88. A. V. H. Soares, J. B. Salazar, D. D. Falcone, F. A. Vasconcellos, R. J. Davis, F. B. Passos, J. Mol. Catal. A 2016, 415, 27-36.
  89.  
  90. M. Akiyama, S. Sato, R. Takahashi, K. Inui, M. Yokota, Appl. Catal. A 2009, 371, 60-66;
  91. S. Sato, M. Akiyama, K. Inui, M. Yokota, Chem. Lett. 2009, 38, 560-561;
  92. S. Sato, D. Sakai, F. Sato, Y. Yamada, Chem. Lett. 2012, 41, 965-966;
  93. D. Sun, Y. Yamada, S. Sato, Appl. Catal. A 2014, 475, 63-68.
  94.  
  95. S. Sato, M. Akiyama, R. Takahashi, T. Hara, K. Inui, M. Yokota, Appl. Catal. A 2008, 347, 186-191;
  96. S. R. Schmidt, S. K. Tanielyan, N. Marin, G. Alvez, R. L. Augustine, Top. Catal. 2010, 53, 1214-1216;
  97. S. K. Tanielyan, N. Marin, G. Alvez, R. Bhagat, B. Miryala, R. L. Augustine, S. R. Schmidt, Org. Process Res. Dev. 2013, 18, 1419-1426.
  98. D. Sun, Y. Yamada, S. Sato, Appl. Catal. A 2014, 487, 234-241.
  99.  
  100. I. Gandarias, P. L. Arias, J. Requies, M. B. Güemez, J. L. G. Fierro, Appl. Catal. B 2010, 97, 248-256;
  101. I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori, K. Tomishige, Green Chem. 2007, 9;
  102. J. Feng, W. Xiong, B. Xu, W. Jiang, J. Wang, H. Chen, Catal. Commun. 2014, 46, 98-102;
  103. F. Auneau, S. Noël, G. Aubert, M. Besson, L. Djakovitch, C. Pinel, Catal. Commun. 2011, 16, 144-149;
  104. N. Hamzah, N. M. Nordin, A. H. A. Nadzri, Y. A. Nik, M. B. Kassim, M. A. Yarmo, Appl. Catal. A 2012, 419-420, 133-141;
  105. M. A. Dasari, P.-P. Kiatsimkul, W. R. Sutterlin, G. J. Suppes, Appl. Catal. A 2005, 281, 225-231;
  106. D. Durán-Martín, M. Ojeda, M. L. Granados, J. L. G. Fierro, R. Mariscal, Catal. Today 2013, 210, 98-105;
  107. M. Balaraju, V. Rekha, P. S. Sai Prasad, R. B. N. Prasad, N. Lingaiah, Catal. Lett. 2008, 126, 119-124;
  108. Z. Wu, Y. Mao, M. Song, X. Yin, M. Zhang, Catal. Commun. 2013, 32, 52-57;
  109. P. Hirunsit, C. Luadthong, K. Faungnawakij, RSC Adv. 2015, 5, 11188-11197;
  110. E. S. Vasiliadou, T. M. Eggenhuisen, P. Munnik, P. E. de Jongh, K. P. de Jong, A. A. Lemonidou, Appl. Catal. B 2014, 145, 108-119;
  111. Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou, X. Zheng, Bioresour. Technol. 2010, 101, 7099-7103;
  112. Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng, Appl. Catal. B 2011, 101, 431-440;
  113. X. Guo, Y. Li, W. Song, W. Shen, Catal. Lett. 2011, 141, 1458-1463;
  114. Y. Li, H. Liu, L. Ma, D. He, RSC Adv. 2014, 4;
  115. J. B. Salazar, D. D. Falcone, H. N. Pham, A. K. Datye, F. B. Passos, R. J. Davis, Appl. Catal. A 2014, 482, 137-144;
  116. T. Jiang, Y. Zhou, S. Liang, H. Liu, B. Han, Green Chem. 2009, 11;
  117. J. Zhou, L. Guo, X. Guo, J. Mao, S. Zhang, Green Chem. 2010, 12;
  118. D. Stošić, S. Bennici, S. Sirotin, P. Stelmachowski, J.-L. Couturier, J.-L. Dubois, A. Travert, A. Auroux, Catal. Today 2014, 226, 167-175.
  119. I. Gandarias, S. G. Fernández, M. E. Doukkali, Top. Catal. 2013, 56, 995-1007.
  120.  
  121. S. Zhu, X. Gao, Y. Zhu, Y. Zhu, H. Zheng, Y. Li, J. Catal. 2013, 303, 70-79;
  122. E. S. Vasiliadou, A. A. Lemonidou, Appl. Catal. A 2011, 396, 177-185;
  123. Y. Feng, H. Yin, A. Wang, L. Shen, L. Yu, T. Jiang, Chem. Eng. J. 2011, 168, 403-412;
  124. H. Zhao, L. Zheng, X. Li, P. Chen, Z. Hou, Catal. Today 2019;
  125. Y. Nakagawa, M. Tamura, K. Tomishige, J. Mater. Chem. A 2014, 2, 6688-6702.
  126. C. Wang, H. Jiang, C. Chen, R. Chen, W. Xing, Chem. Eng. J. 2015, 264, 344-350.
  127. G. Carotenuto, R. Tesser, M. Di Serio, E. Santacesaria, Catal. Today 2013, 203, 202-210.
  128. F.-W. Chang, H.-C. Yang, L. S. Roselin, W.-Y. Kuo, Appl. Catal. A 2006, 304, 30-39.
  129. F. Cai, D. Pan, J. J. Ibrahim, J. Zhang, G. Xiao, Appl. Catal. A 2018, 564, 172-182.

Grants

  1. 22078365/National Natural Science Foundation of China
  2. 21706290/National Natural Science Foundation of China
  3. ZR2017MB004/Natural Science Foundation of Shandong Province
  4. 17-1-1-80-jch/Innovative Research Funding from Qingdao, Shandong Province
  5. 17CX02017A/"Fundamental Research Funds for the Central Universities"
  6. 20CX02204A/"Fundamental Research Funds for the Central Universities"

Word Cloud

Created with Highcharts 10.0.0reactionHmechanismtransferhydrogenolysiscatalystdevelopmentCatalyticdesigngenerationglycerolcatalystsrevisedcriticallypathwayscleavagewillusingliquidH-donorsabsencepressurizedmildtemperaturesregardedimportanttechnologysubstitutetraditionalhydrogenationprocessesindustryDespitedecadeseveralbreakthroughsinvolvedsubsequentreactionsstilldebatereviewrepresentativeexamplemetallicrespectsurfacedetailedpropanolmethanolformicacidethanoldiscussedsystematicallyparticularcatalyticC-Hspillover/transferC-OstepsexperimentaltheoreticalresultsliteratureInsightsefficiencystructure-performancerelationPdCuNiprovidedfuturemanufactureprocessoutcomeworkusefulsuccessfulimplementationbio-refineryTransferHydrogenolysisGlycerolHeterogeneousCatalysts:ShortReviewMechanisticStudies

Similar Articles

Cited By