VeTra: a tool for trajectory inference based on RNA velocity.

Guangzheng Weng, Junil Kim, Kyoung Jae Won
Author Information
  1. Guangzheng Weng: Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark. ORCID
  2. Junil Kim: Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark.
  3. Kyoung Jae Won: Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark.

Abstract

MOTIVATION: Trajectory inference (TI) for single cell RNA sequencing (scRNAseq) data is a powerful approach to interpret dynamic cellular processes such as cell cycle and development. Still, however, accurate inference of trajectory is challenging. Recent development of RNA velocity provides an approach to visualize cell state transition without relying on prior knowledge.
RESULTS: To perform TI and group cells based on RNA velocity we developed VeTra. By applying cosine similarity and merging weakly connected components, VeTra identifies cell groups from the direction of cell transition. Besides, VeTra suggests key regulators from the inferred trajectory. VeTra is a useful tool for TI and subsequent analysis.
AVAILABILITY AND IMPLEMENTATION: The Vetra is available at https://github.com/wgzgithub/VeTra.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

References

  1. BMC Genomics. 2018 Jun 19;19(1):477 [PMID: 29914354]
  2. PLoS Comput Biol. 2020 Sep 9;16(9):e1008205 [PMID: 32903255]
  3. Nat Biotechnol. 2020 Dec;38(12):1408-1414 [PMID: 32747759]
  4. Science. 2017 Jul 7;357(6346): [PMID: 28684471]
  5. J Clin Invest. 2011 Dec;121(12):4572-8 [PMID: 22133881]
  6. Dev Biol. 2004 May 15;269(2):479-88 [PMID: 15110714]
  7. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1607-11 [PMID: 10677506]
  8. Nat Neurosci. 2018 Feb;21(2):290-299 [PMID: 29335606]
  9. Diabetes Obes Metab. 2011 Oct;13 Suppl 1:31-8 [PMID: 21824254]
  10. Nat Biotechnol. 2016 Jun;34(6):637-45 [PMID: 27136076]
  11. Nucleic Acids Res. 2021 Jan 11;49(1):e1 [PMID: 33170214]
  12. Genome Biol. 2019 Mar 19;20(1):59 [PMID: 30890159]
  13. Cell Syst. 2020 Mar 25;10(3):265-274.e11 [PMID: 32135093]
  14. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499 [PMID: 31501331]
  15. Development. 2000 Aug;127(16):3533-42 [PMID: 10903178]
  16. Nat Methods. 2018 May;15(5):379-386 [PMID: 29630061]
  17. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  18. Bioinformatics. 2017 Aug 01;33(15):2314-2321 [PMID: 28379368]
  19. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  20. Cell Rep Methods. 2021 Oct 25;1(6):100095 [PMID: 35474895]
  21. PLoS Comput Biol. 2021 Jan 11;17(1):e1008585 [PMID: 33428615]
  22. Development. 2002 May;129(10):2447-57 [PMID: 11973276]
  23. Mol Cell Biol. 2004 Oct;24(20):9070-8 [PMID: 15456880]
  24. Development. 2019 Jun 17;146(12): [PMID: 31160421]
  25. Nat Methods. 2016 Oct;13(10):845-8 [PMID: 27571553]
  26. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  27. Nat Commun. 2021 Jun 24;12(1):3942 [PMID: 34168133]

Grants

  1. NNF17CC0027852/The Novo Nordisk Foundation Center for Stem Cell Biology
  2. R313-2019-421/Lundbeck Foundation
  3. 0135-00243B/Independent Research Fund Denmark

Word Cloud

Created with Highcharts 10.0.0cellRNAVeTrainferenceTItrajectoryvelocitydataapproachdevelopmenttransitionbasedtoolavailableMOTIVATION:TrajectorysinglesequencingscRNAseqpowerfulinterpretdynamiccellularprocessescycleStillhoweveraccuratechallengingRecentprovidesvisualizestatewithoutrelyingpriorknowledgeRESULTS:performgroupcellsdevelopedapplyingcosinesimilaritymergingweaklyconnectedcomponentsidentifiesgroupsdirectionBesidessuggestskeyregulatorsinferredusefulsubsequentanalysisAVAILABILITYANDIMPLEMENTATION:Vetrahttps://githubcom/wgzgithub/VeTraSUPPLEMENTARYINFORMATION:SupplementaryBioinformaticsonlineVeTra:

Similar Articles

Cited By