Leveraging Artificial Intelligence to Improve Chronic Disease Care: Methods and Application to Pharmacotherapy Decision Support for Type-2 Diabetes Mellitus.

Shinji Tarumi, Wataru Takeuchi, George Chalkidis, Salvador Rodriguez-Loya, Junichi Kuwata, Michael Flynn, Kyle M Turner, Farrant H Sakaguchi, Charlene Weir, Heidi Kramer, David E Shields, Phillip B Warner, Polina Kukhareva, Hideyuki Ban, Kensaku Kawamoto
Author Information
  1. Shinji Tarumi: Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan.
  2. Wataru Takeuchi: Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan.
  3. George Chalkidis: Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan.
  4. Salvador Rodriguez-Loya: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.
  5. Junichi Kuwata: Department of Product Design, Center for Social Innovation, Hitachi Ltd., Kokubunji, Tokyo, Japan.
  6. Michael Flynn: Departments of Internal Medicine and Pediatrics, University of Utah, Salt Lake City, Utah, United States.
  7. Kyle M Turner: Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, United States.
  8. Farrant H Sakaguchi: Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, United States.
  9. Charlene Weir: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.
  10. Heidi Kramer: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.
  11. David E Shields: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.
  12. Phillip B Warner: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.
  13. Polina Kukhareva: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.
  14. Hideyuki Ban: Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan.
  15. Kensaku Kawamoto: Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States.

Abstract

OBJECTIVES: Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI.
METHODS: Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results.
RESULTS: The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah.
CONCLUSION: A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.

References

  1. Diabetes Ther. 2014 Dec;5(2):347-54 [PMID: 25113408]
  2. Stud Health Technol Inform. 2015;216:682-6 [PMID: 26262138]
  3. Chron Respir Dis. 2016 Aug;13(3):264-83 [PMID: 27097638]
  4. J Am Med Inform Assoc. 2019 Oct 1;26(10):977-988 [PMID: 31220274]
  5. Prim Care Diabetes. 2017 Feb;11(1):3-12 [PMID: 27727005]
  6. Diabetes Metab Syndr. 2019 Jul - Aug;13(4):2507-2512 [PMID: 31405669]
  7. J Med Syst. 2017 Apr;41(4):55 [PMID: 28243816]
  8. Diabetes Care. 2015 Apr;38(4):604-9 [PMID: 25573883]
  9. J Pers Med. 2020 Mar 31;10(2): [PMID: 32244292]
  10. Diabet Med. 2016 Jun;33(6):734-41 [PMID: 27194173]
  11. Yearb Med Inform. 2019 Aug;28(1):120-127 [PMID: 31419824]
  12. Diabetes Care. 2017 Feb;40(2):210-217 [PMID: 27920019]
  13. Sensors (Basel). 2017 Jun 23;17(7): [PMID: 28644419]
  14. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165 [PMID: 30770453]
  15. J Am Med Inform Assoc. 2018 May 1;25(5):538-547 [PMID: 29409033]
  16. Diabetes Care. 2017 Nov;40(11):1425-1432 [PMID: 28801473]
  17. BMC Bioinformatics. 2015;16 Suppl 1:S5 [PMID: 25707942]
  18. J Am Med Inform Assoc. 2020 Aug 1;27(8):1225-1234 [PMID: 32719880]
  19. Diabetes Obes Metab. 2017 Sep;19(9):1295-1305 [PMID: 28417575]
  20. J Diabetes Sci Technol. 2018 Mar;12(2):295-302 [PMID: 28494618]
  21. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60 [PMID: 27382149]
  22. J Am Med Inform Assoc. 2016 Sep;23(5):899-908 [PMID: 26911829]
  23. Diabetes Care. 2018 Oct;41(10):2155-2161 [PMID: 30089663]
  24. J Am Med Inform Assoc. 2012 Jul-Aug;19(4):597-603 [PMID: 22427539]
  25. Diabetes Obes Metab. 2018 Feb;20(2):427-437 [PMID: 28834075]
  26. Diabetes Metab. 2017 Dec;43(6):501-511 [PMID: 28754263]
  27. J Diabetes Sci Technol. 2018 Mar;12(2):303-310 [PMID: 28539087]
  28. Diabetes Care. 2013 Aug;36(8):2271-9 [PMID: 23418368]
  29. IEEE J Biomed Health Inform. 2017 Sep;21(5):1280-1287 [PMID: 28113528]
  30. Am J Med. 2018 Feb;131(2):129-133 [PMID: 29126825]
  31. Comput Methods Programs Biomed. 2016 Nov;136:131-41 [PMID: 27686710]
  32. J Med Internet Res. 2018 May 30;20(5):e10775 [PMID: 29848472]
  33. Adv Ther. 2018 Nov;35(11):1735-1745 [PMID: 30374807]

MeSH Term

Artificial Intelligence
Chronic Disease
Decision Support Systems, Clinical
Diabetes Mellitus, Type 2
Electronic Health Records
Humans

Word Cloud

Created with Highcharts 10.0.0CDSScaretreatmentchronicdevelopedintegratedEHRpredictionArtificialAIpredictiveconditionsmanyachievingpatientsanalyticalmethodmodelsalternatestrategiesgoalsAI-drivenreviewsuccessfullyOBJECTIVES:intelligenceincludinganalyticsgreatpotentialimprovecommonhighmorbiditymortalityHoweverstillchallengesvisiongoalprojectdevelopapplymethodsenhancingdiseaseusingMETHODS:Usingdataset27904diabetesvalidatedgeneratingpathwaygraphconsistspredictlikelihoodclinicaldecisionsupportsystemelectronichealthrecordencapsulatingOpenCDSWebservicemoduledeliveringmodeloutputsSMARTFHIRSubstitutableMedicalApplicationsReusableTechnologiesFastHealthcareInteroperabilityResourcesweb-baseddashboardenablescliniciansrelevantpatientparametersselectbasedresultsRESULTS:proposedoutperformedpreviousmachine-learningalgorithmsaccuracyEpicUniversityUtahCONCLUSION:analytics-basedstandards-basedinteroperabilityframeworksapproachusedpotentiallyappliedbringpointLeveragingIntelligenceImproveChronicDiseaseCare:MethodsApplicationPharmacotherapyDecisionSupportType-2DiabetesMellitus

Similar Articles

Cited By