MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2.

Zhen Li, Zekang Ye, Jiazheng Ma, Qian Gu, Jianzhen Teng, Xiaoxuan Gong
Author Information
  1. Zhen Li: Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.
  2. Zekang Ye: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.
  3. Jiazheng Ma: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.
  4. Qian Gu: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.
  5. Jianzhen Teng: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.
  6. Xiaoxuan Gong: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.

Abstract

Doxorubicin is one of the most important chemotherapeutic drugs for the treatment of malignant tumors, but the cardiotoxicity of doxorubicin severely limits its clinical application. Increasing numbers of microRNAs (miRNAs/miRs) have been found to be dysregulated in doxorubicin‑treated cardiomyocytes or animal hearts. The current study aimed to investigate the role of miR‑133b in doxorubicin‑induced cardiomyocyte injury. Doxorubicin was used to treat HL‑1 cardiomyocytes to mimic cardiomyocyte injury . A mouse model of cardiac injury was generated by chronic intraperitoneal injections of doxorubicin. Masson's trichrome staining was performed on cardiac tissues to reveal cardiac fibrosis. Bioinformatics analysis and luciferase reporter assays were applied to explore the downstream targets of miR‑133b. Flow cytometry and western blotting were conducted to detect cardiomyocyte apoptosis. Protein expression levels of collagen I, III and IV, and fibronectin were detected to reveal extracellular matrix deposition. The results revealed that doxorubicin decreased miR‑133b expression in the treated HL‑1 cardiomyocytes and mouse hearts. Overexpression of miR‑133b restrained cardiomyocyte apoptosis, inhibited collagen accumulation and alleviated cardiac fibrosis . Mechanistically, polypyrimidine tract binding protein 1 (PTBP1) and transgelin 2 (TAGLN2) were confirmed to bind to miR‑133b after prediction and screening. Moreover, miR‑133b negatively regulated the protein expression levels of PTBP1 and TAGLN2. Finally, overexpression of PTBP1 or TAGLN2 reversed the effects of miR‑133b on apoptosis and collagen accumulation. Thus, the current results indicated that miR‑133b alleviated doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2, implying that miR‑133b may be a potential biomarker for doxorubicin‑induced cardiac injury.

Keywords

References

  1. Biomed Pharmacother. 2019 Jul;115:108883 [PMID: 31004989]
  2. J Cancer Res Ther. 2014 Oct-Dec;10(4):853-8 [PMID: 25579518]
  3. Asian Pac J Cancer Prev. 2011;12(10):2697-704 [PMID: 22320977]
  4. Circ Res. 1991 Jun;68(6):1610-3 [PMID: 2036713]
  5. Circulation. 2017 Dec 19;136(25):2468-2485 [PMID: 28972001]
  6. Cell Mol Biol (Noisy-le-grand). 2017 Oct 31;63(10):80-86 [PMID: 29096746]
  7. Biochem Soc Trans. 2016 Aug 15;44(4):1058-65 [PMID: 27528752]
  8. Can J Cardiol. 2016 Aug;32(8):996-1007 [PMID: 26919791]
  9. Eur J Pharmacol. 2017 Nov 5;814:95-105 [PMID: 28811127]
  10. Future Med Chem. 2015;7(13):1771-92 [PMID: 26399457]
  11. Cancer Treat Rev. 1982 Jun;9(2):149-64 [PMID: 6751530]
  12. Toxicology. 2018 Feb 1;394:72-83 [PMID: 29248607]
  13. Nat Rev Drug Discov. 2017 Mar;16(3):203-222 [PMID: 28209991]
  14. Biochem Biophys Res Commun. 2019 Feb 5;509(2):384-389 [PMID: 30594394]
  15. Mol Med Rep. 2017 Jan;15(1):359-365 [PMID: 27922664]
  16. Redox Biol. 2018 May;15:284-296 [PMID: 29304479]
  17. BMC Pharmacol Toxicol. 2014 May 27;15:28 [PMID: 24887454]
  18. Cell Death Dis. 2015 May 07;6:e1754 [PMID: 25950484]
  19. J Allergy Clin Immunol. 2018 Apr;141(4):1202-1207 [PMID: 29074454]
  20. Theranostics. 2016 Sep 10;6(12):2068-2083 [PMID: 27698941]
  21. J Mol Cell Cardiol. 2017 Nov;112:58-63 [PMID: 28823816]
  22. J Cell Physiol. 2020 May;235(5):4291-4301 [PMID: 31612498]
  23. Mol Cell Biochem. 2015 Feb;400(1-2):173-81 [PMID: 25421410]
  24. Cell Death Dis. 2017 Jul 20;8(7):e2950 [PMID: 28726784]
  25. West J Med. 1983 Sep;139(3):332-41 [PMID: 6356608]
  26. Heart Fail Rev. 2018 Jan;23(1):109-122 [PMID: 28944400]
  27. Biochemistry. 2018 Jul 3;57(26):3873-3882 [PMID: 29851470]
  28. Circulation. 2017 Dec 19;136(25):2451-2467 [PMID: 28971999]
  29. BMC Vet Res. 2019 Jan 24;15(1):36 [PMID: 30678671]
  30. Front Pharmacol. 2018 Aug 17;9:903 [PMID: 30174600]
  31. Oncol Lett. 2020 Nov;20(5):213 [PMID: 32963619]
  32. Cell Death Differ. 2009 Nov;16(11):1460-8 [PMID: 19590510]
  33. Mol Ther Nucleic Acids. 2019 Sep 6;17:754-766 [PMID: 31437654]
  34. Nephrol Dial Transplant. 2017 Nov 1;32(11):1831-1840 [PMID: 28460073]
  35. J Biochem Mol Toxicol. 2020 Apr;34(4):e22452 [PMID: 32052927]
  36. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  37. Biomed Pharmacother. 2019 Mar;111:476-484 [PMID: 30594787]
  38. Br J Biomed Sci. 2021 Apr 14;:1-8 [PMID: 33211633]
  39. J Nucl Cardiol. 2003 Mar-Apr;10(2):132-9 [PMID: 12673177]
  40. Eur J Pharmacol. 2001 Mar 9;415(1):1-11 [PMID: 11245845]
  41. Mol Ther. 2019 Jan 2;27(1):17-28 [PMID: 30527757]
  42. J Am Heart Assoc. 2015 Oct 12;4(10):e002379 [PMID: 26459932]
  43. J Cell Physiol. 2019 Apr;234(4):4910-4923 [PMID: 30317571]
  44. Ann Intern Med. 1979 Nov;91(5):710-7 [PMID: 496103]
  45. Histol Histopathol. 2004 Oct;19(4):1101-8 [PMID: 15375752]
  46. Exp Ther Med. 2020 Feb;19(2):1388-1392 [PMID: 32010313]
  47. Cancer Sci. 2016 Dec;107(12):1767-1775 [PMID: 27696637]
  48. Circ J. 2016 Sep 23;80(10):2183-91 [PMID: 27593229]

MeSH Term

Animals
Apoptosis
Cardiotoxicity
Disease Models, Animal
Doxorubicin
Fibrosis
Gene Expression Regulation
Heterogeneous-Nuclear Ribonucleoproteins
Humans
Male
Mice
Mice, Inbred C57BL
MicroRNAs
Microfilament Proteins
Muscle Proteins
Myocytes, Cardiac
Polypyrimidine Tract-Binding Protein

Chemicals

Heterogeneous-Nuclear Ribonucleoproteins
MicroRNAs
Microfilament Proteins
Mirn133 microRNA, mouse
Muscle Proteins
Ptbp1 protein, mouse
Tagln2 protein, mouse
Polypyrimidine Tract-Binding Protein
Doxorubicin

Word Cloud

Created with Highcharts 10.0.0miR‑133bcardiomyocytecardiacinjuryapoptosisPTBP1TAGLN2doxorubicindoxorubicin‑inducedfibrosiscardiomyocytesexpressionDoxorubicinheartscurrentHL‑1mousereveallevelsresultscollagenaccumulationalleviatedpolypyrimidinetractbindingproteintargetingoneimportantchemotherapeuticdrugstreatmentmalignanttumorscardiotoxicityseverelylimitsclinicalapplicationIncreasingnumbersmicroRNAsmiRNAs/miRsfounddysregulateddoxorubicin‑treatedanimalstudyaimedinvestigateroleusedtreatmimicmodelgeneratedchronicintraperitonealinjectionsMasson'strichromestainingperformedtissuesBioinformaticsanalysisluciferasereporterassaysappliedexploredownstreamtargetsFlowcytometrywesternblottingconducteddetectProteincollagen IIII and IVfibronectindetectedextracellularmatrixdepositionrevealeddecreasedtreatedOverexpressionrestrainedinhibitedMechanisticallyprotein 1transgelin 2 confirmedbindpredictionscreeningMoreovernegativelyregulatedFinallyoverexpressionreversedeffectsThusindicatedimplyingmaypotentialbiomarkerMicroRNA‑133balleviatesmicroRNA‑133b1transgelin2

Similar Articles

Cited By