A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues.

Celinda M Kofron, Tae Yun Kim, Fabiola Munarin, Arvin H Soepriatna, Rajeev J Kant, Ulrike Mende, Bum-Rak Choi, Kareen L K Coulombe
Author Information
  1. Celinda M Kofron: Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
  2. Tae Yun Kim: Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA.
  3. Fabiola Munarin: Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
  4. Arvin H Soepriatna: Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
  5. Rajeev J Kant: Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
  6. Ulrike Mende: Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA.
  7. Bum-Rak Choi: Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA. bum-rak_choi@brown.edu.
  8. Kareen L K Coulombe: Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA. kareen_coulombe@brown.edu.

Abstract

Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.

References

  1. Sci Rep. 2018 Jul 5;8(1):10160 [PMID: 29976997]
  2. Acta Physiol (Oxf). 2010 Feb;198 Suppl 676:1-48 [PMID: 20132149]
  3. Toxicol Sci. 2016 Jul;152(1):99-112 [PMID: 27125969]
  4. J Clin Invest. 1988 Sep;82(3):972-9 [PMID: 3417875]
  5. Toxicol Appl Pharmacol. 2015 Oct 15;288(2):249-57 [PMID: 26232523]
  6. Front Cardiovasc Med. 2019 Jun 26;6:87 [PMID: 31294032]
  7. Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H2006-17 [PMID: 21890694]
  8. Crit Care Nurs Clin North Am. 2016 Sep;28(3):357-71 [PMID: 27484663]
  9. Comput Toxicol. 2018 May;6:55-63 [PMID: 29806042]
  10. Toxicol Sci. 2019 Feb 1;167(2):573-580 [PMID: 30365015]
  11. Crit Care Med. 2010 Jun;38(6 Suppl):S188-97 [PMID: 20502173]
  12. Front Biosci (Landmark Ed). 2018 Jan 1;23:43-64 [PMID: 28930537]
  13. Sci Rep. 2017 Aug 1;7(1):7005 [PMID: 28765558]
  14. J Pharmacol Toxicol Methods. 2018 Sep - Oct;99:106612 [PMID: 31319140]
  15. Clin Pharmacol Ther. 2014 Nov;96(5):549-58 [PMID: 25054430]
  16. J Pharmacol Toxicol Methods. 2016 Sep-Oct;81:251-62 [PMID: 27060526]
  17. Am Heart J. 2014 Mar;167(3):292-300 [PMID: 24576511]
  18. Circulation. 2013 Sep 10;128(11 Suppl 1):S3-13 [PMID: 24030418]
  19. Tissue Eng Part C Methods. 2018 Jan;24(1):56-67 [PMID: 28967302]
  20. Regul Toxicol Pharmacol. 2018 Apr;94:183-196 [PMID: 29408321]
  21. PLoS One. 2013 Jul 08;8(7):e68971 [PMID: 23861955]
  22. Pharmacol Ther. 2014 Aug;143(2):246-52 [PMID: 24657289]
  23. Annu Rev Pharmacol Toxicol. 2018 Jan 6;58:83-103 [PMID: 28992430]
  24. J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S56-61 [PMID: 17993330]
  25. Cell Rep. 2018 Sep 25;24(13):3582-3592 [PMID: 30257217]
  26. Front Cardiovasc Med. 2019 Nov 05;6:158 [PMID: 31750317]
  27. J Cardiovasc Pharmacol Ther. 2004 Sep;9 Suppl 1:S85-97 [PMID: 15378133]
  28. J Mol Cell Cardiol. 2016 May;94:22-31 [PMID: 26996756]
  29. Am J Physiol Heart Circ Physiol. 2017 Oct 1;313(4):H810-H827 [PMID: 28710068]
  30. Biotechnol Bioeng. 2018 Aug;115(8):1958-1970 [PMID: 29663322]
  31. J Interv Card Electrophysiol. 2008 Oct;23(1):45-9 [PMID: 18465217]
  32. Med Res Rev. 2005 Mar;25(2):133-66 [PMID: 15389727]
  33. Eur J Pharmacol. 2019 Jan 5;842:221-230 [PMID: 30391349]
  34. Channels (Austin). 2013 Jul-Aug;7(4):249-62 [PMID: 23696033]
  35. Adv Drug Deliv Rev. 2016 Jan 15;96:225-33 [PMID: 26212156]
  36. Curr Heart Fail Rep. 2005 Sep;2(3):111-7 [PMID: 16138946]
  37. Regul Toxicol Pharmacol. 2020 Apr;112:104592 [PMID: 32017962]
  38. Front Physiol. 2017 Aug 23;8:616 [PMID: 28878692]
  39. Ther Innov Regul Sci. 2019 Jul;53(4):519-525 [PMID: 30157676]
  40. Front Endocrinol (Lausanne). 2017 Oct 09;8:253 [PMID: 29067001]
  41. PLoS One. 2020 Mar 10;15(3):e0230001 [PMID: 32155214]
  42. Cell. 2019 Feb 7;176(4):913-927.e18 [PMID: 30686581]
  43. J Pharmacol Toxicol Methods. 2017 Jan - Feb;83:42-54 [PMID: 27646297]
  44. J Cardiovasc Electrophysiol. 2004 Apr;15(4):475-95 [PMID: 15090000]
  45. Int J Numer Method Biomed Eng. 2018 May;34(5):e2964 [PMID: 29424967]
  46. Eur Heart J. 2019 Jun 7;40(22):1771-1777 [PMID: 29982507]
  47. J Am Heart Assoc. 2015 Apr 13;4(4): [PMID: 25870186]
  48. Expert Rev Cardiovasc Ther. 2016;14(2):245-53 [PMID: 26560188]
  49. Int J Environ Res Public Health. 2014 Aug 15;11(8):8399-413 [PMID: 25153468]
  50. Toxicol Appl Pharmacol. 2017 May 1;322:60-74 [PMID: 28259702]
  51. Am J Physiol Heart Circ Physiol. 2012 May 15;302(10):H2031-42 [PMID: 22427522]
  52. Mol Pharm. 2014 Jul 7;11(7):2071-81 [PMID: 24641346]
  53. Ther Adv Drug Saf. 2012 Oct;3(5):241-53 [PMID: 25083239]
  54. Circulation. 2017 May 9;135(19):1832-1847 [PMID: 28167635]
  55. Rev Port Cardiol. 2018 May;37(5):435-446 [PMID: 29636202]
  56. Cardiovasc Res. 2000 Aug;47(2):219-33 [PMID: 10947683]
  57. Card Electrophysiol Clin. 2019 Sep;11(3):495-510 [PMID: 31400874]
  58. Circulation. 2004 Aug 24;110(8):904-10 [PMID: 15302796]
  59. Cardiol Clin. 1986 Aug;4(3):459-72 [PMID: 3530468]
  60. Biophys J. 1995 Nov;69(5):1830-7 [PMID: 8580326]
  61. J R Soc Med. 2009 Mar;102(3):120-2 [PMID: 19297654]
  62. J Physiol. 2017 Jun 15;595(12):3891-3905 [PMID: 28116799]
  63. PLoS One. 2011 Apr 08;6(4):e18293 [PMID: 21494607]
  64. Circulation. 1996 Nov 15;94(10):2526-34 [PMID: 8921797]
  65. Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1436-45 [PMID: 19648254]
  66. BMC Pharmacol Toxicol. 2015 Dec 16;16:39 [PMID: 26671227]
  67. Cardiovasc Res. 2008 Feb 1;77(3):481-8 [PMID: 18006430]
  68. Stem Cell Reports. 2014 Aug 12;3(2):260-8 [PMID: 25254340]
  69. Nat Rev Cardiol. 2016 Jun;13(6):333-49 [PMID: 27009425]
  70. Stem Cells Int. 2020 Jul 16;2020:9363809 [PMID: 32724316]
  71. PLoS One. 2018 May 1;13(5):e0196714 [PMID: 29715271]
  72. Circulation. 2020 Mar 3;141(9):e139-e596 [PMID: 31992061]
  73. Heart Rhythm. 2010 Dec;7(12):1891-9 [PMID: 20868774]
  74. Toxicol Lett. 2018 Sep 15;294:184-192 [PMID: 29803840]
  75. Lab Chip. 2015 Aug 7;15(15):3242-9 [PMID: 26135270]
  76. Ann Biomed Eng. 2021 Jan;49(1):129-138 [PMID: 32367466]
  77. Toxicol Sci. 2017 Feb;155(2):444-457 [PMID: 28069985]
  78. EXCLI J. 2015 May 05;14:577-600 [PMID: 26869865]
  79. J Emerg Med. 2018 Apr;54(4):484-486 [PMID: 29439890]
  80. Expert Rev Clin Pharmacol. 2008 Jan;1(1):93-104 [PMID: 24410513]
  81. Nat Biomed Eng. 2020 Apr;4(4):446-462 [PMID: 32284552]
  82. Front Physiol. 2017 Oct 11;8:766 [PMID: 29075196]
  83. Toxicol Sci. 2019 Aug 06;: [PMID: 31385592]
  84. Circulation. 2001 Apr 17;103(15):2004-13 [PMID: 11306531]
  85. Rev Neurol (Paris). 2016 Apr-May;172(4-5):318-23 [PMID: 27063094]
  86. Toxicol Sci. 2018 Aug 1;164(2):550-562 [PMID: 29718449]
  87. Biophys J. 2010 Sep 8;99(5):1408-15 [PMID: 20816052]
  88. Tissue Eng Part C Methods. 2015 Aug;21(8):852-61 [PMID: 25654582]
  89. Nat Rev Drug Discov. 2016 Jul;15(7):457-71 [PMID: 26893184]
  90. Toxicol Sci. 2015 Sep;147(1):286-95 [PMID: 26117837]
  91. Biosens Bioelectron. 2019 Feb 1;126:624-631 [PMID: 30508787]
  92. Front Mol Biosci. 2020 Feb 14;7:14 [PMID: 32118040]
  93. Circ Res. 2019 Oct 25;125(10):e75-e92 [PMID: 31533542]
  94. Expert Opin Drug Metab Toxicol. 2012 Feb;8(2):239-57 [PMID: 22248265]
  95. Curr Cardiol Rep. 2006 Sep;8(5):349-55 [PMID: 16956450]
  96. J Pharmacol Toxicol Methods. 2008 Jul-Aug;58(1):32-40 [PMID: 18582585]
  97. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 [PMID: 22645348]
  98. Int J Cardiol. 2015;187:66-74 [PMID: 25828315]

Grants

  1. U01 ES028184/NIEHS NIH HHS

MeSH Term

Action Potentials
Arrhythmias, Cardiac
Cardiotoxicity
Cell Survival
Cells, Cultured
Death, Sudden, Cardiac
Fibroblasts
Humans
Induced Pluripotent Stem Cells
Models, Biological
Myocardial Contraction
Myocytes, Cardiac
Reproducibility of Results
Risk Assessment
Tissue Engineering

Word Cloud

Created with Highcharts 10.0.0humancardiacvitroenvironmentalcompoundspro-arrhythmicmicrotissuespharmaceuticalcanevaluationchemicalcriticalphysiologicalcardiotoxicityusingactionpotentials3DriskassessmentplatformCardiotoxicitydrugsindustrialchemicalstoxicantssevereevenlifethreateningnecessitatesthoroughresponsePredictingrisksarrhythmiasuddendeathaccuratelydefiningsafetyprofilesCurrentlyavailableapproacheslimitationsincludingfocussingleselectionchannelsusenon-humanspeciesvivolimiteddirecttranslationadvancedrobustnessreproducibilityplatformsassessinginducedpluripotentstemcell-derivedcardiomyocytesfibroblasts3-dimensionalUsingautomatedalgorithmsstatisticalanalyseseightcomprehensivemetricsdemonstratetissue-engineeredrespondappropriatelystimulieffectivelydifferentiatehigh-risklow-riskexhibitingblockadehERGchannelE4031ranolazinerespectivelyshowendocrinedisruptingbisphenol-ABPAcausesacutesensitivedisruptionnanomolarrangeThusnoveladdressesneedstestingleveragedestablishsafeexposurelevelspredictivetoxicity

Similar Articles

Cited By