Formation, characterization and modeling of emergent synthetic microbial communities.

Jia Wang, Dana L Carper, Leah H Burdick, Him K Shrestha, Manasa R Appidi, Paul E Abraham, Collin M Timm, Robert L Hettich, Dale A Pelletier, Mitchel J Doktycz
Author Information
  1. Jia Wang: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  2. Dana L Carper: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  3. Leah H Burdick: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  4. Him K Shrestha: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  5. Manasa R Appidi: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  6. Paul E Abraham: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  7. Collin M Timm: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  8. Robert L Hettich: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  9. Dale A Pelletier: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  10. Mitchel J Doktycz: Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Abstract

Microbial communities colonize plant tissues and contribute to host function. How these communities form and how individual members contribute to shaping the microbial community are not well understood. Synthetic microbial communities, where defined individual isolates are combined, can serve as valuable model systems for uncovering the organizational principles of communities. Using genome-defined organisms, systematic analysis by computationally-based network reconstruction can lead to mechanistic insights and the metabolic interactions between species. In this study, 10 bacterial strains isolated from the rhizosphere were combined and passaged in two different media environments to form stable microbial communities. The membership and relative abundances of the strains stabilized after around 5 growth cycles and resulted in just a few dominant strains that depended on the medium. To unravel the underlying metabolic interactions, flux balance analysis was used to model microbial growth and identify potential metabolic exchanges involved in shaping the microbial communities. These analyses were complemented by growth curves of the individual isolates, pairwise interaction screens, and metaproteomics of the community. A fast growth rate is identified as one factor that can provide an advantage for maintaining presence in the community. Final community selection can also depend on selective antagonistic relationships and metabolic exchanges. Revealing the mechanisms of interaction among plant-associated microorganisms provides insights into strategies for engineering microbial communities that can potentially increase plant growth and disease resistance. Further, deciphering the membership and metabolic potentials of a bacterial community will enable the design of synthetic communities with desired biological functions.

Keywords

References

  1. Front Microbiol. 2017 May 10;8:836 [PMID: 28539921]
  2. Curr Opin Microbiol. 2016 Jun;31:124-131 [PMID: 27060776]
  3. PLoS One. 2013 May 31;8(5):e64567 [PMID: 23741341]
  4. PLoS Comput Biol. 2016 Jun 17;12(6):e1004986 [PMID: 27314840]
  5. PLoS One. 2013 Sep 30;8(9):e76471 [PMID: 24098791]
  6. Int J Food Microbiol. 2004 Aug 1;94(3):301-12 [PMID: 15246241]
  7. J Microbiol. 2015 May;53(5):295-305 [PMID: 25935300]
  8. PLoS One. 2015 Jun 26;10(6):e0126915 [PMID: 26114477]
  9. Nat Commun. 2017 Nov 16;8(1):1558 [PMID: 29146960]
  10. Cell Rep. 2014 May 22;7(4):1104-15 [PMID: 24794435]
  11. Appl Environ Microbiol. 2013 Sep;79(18):5745-52 [PMID: 23851092]
  12. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  13. PLoS One. 2014 Jul 23;9(7):e102451 [PMID: 25054627]
  14. Proc Natl Acad Sci U S A. 2015 May 19;112(20):6449-54 [PMID: 25941371]
  15. J Cell Physiol. 2016 Nov;231(11):2339-45 [PMID: 27186840]
  16. Nat Rev Microbiol. 2012 Jul 16;10(8):538-50 [PMID: 22796884]
  17. Front Microbiol. 2020 Jul 07;11:1462 [PMID: 32733410]
  18. Sci Rep. 2015 Feb 10;5:8365 [PMID: 25666585]
  19. Bioessays. 2013 Dec;35(12):1050-5 [PMID: 24114984]
  20. Nat Ecol Evol. 2020 Jan;4(1):40-45 [PMID: 31844189]
  21. Microbiome. 2018 Feb 12;6(1):31 [PMID: 29433554]
  22. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  23. J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 [PMID: 24226387]
  24. Chemosphere. 2020 Nov;258:127175 [PMID: 32535435]
  25. PLoS Comput Biol. 2020 May 29;16(5):e1007917 [PMID: 32469867]
  26. Front Microbiol. 2018 Feb 14;9:219 [PMID: 29491859]
  27. Front Microbiol. 2015 Mar 19;6:213 [PMID: 25852671]
  28. Elife. 2015 Oct 16;4:e08208 [PMID: 26473972]
  29. ISME J. 2019 Feb;13(2):494-508 [PMID: 30291327]
  30. Nat Commun. 2016 Jul 12;7:12151 [PMID: 27402057]
  31. FEMS Microbiol Ecol. 2017 Oct 1;93(10): [PMID: 28962015]
  32. Nat Ecol Evol. 2017 Mar 27;1(5):109 [PMID: 28812687]
  33. Trends Cell Biol. 2020 Mar;30(3):213-225 [PMID: 31980346]
  34. Nat Commun. 2015 Feb 23;6:6283 [PMID: 25704114]
  35. Nat Methods. 2007 Nov;4(11):923-5 [PMID: 17952086]
  36. Mol Syst Biol. 2018 Jun 21;14(6):e8157 [PMID: 29930200]
  37. FEMS Microbiol Ecol. 2007 May;60(2):341-50 [PMID: 17343679]
  38. Mol Cell Proteomics. 2019 May;18(5):1027-1035 [PMID: 30833379]
  39. Curr Opin Microbiol. 2017 Aug;38:114-121 [PMID: 28591676]
  40. Life (Basel). 2019 Feb 26;9(1): [PMID: 30813538]
  41. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  42. mSystems. 2018 Jan 23;3(1): [PMID: 29404422]
  43. mSystems. 2018 Mar 27;3(3): [PMID: 29600286]
  44. Nat Commun. 2019 May 9;10(1):2120 [PMID: 31073166]
  45. Nat Rev Microbiol. 2015 Jun;13(6):360-72 [PMID: 25915636]
  46. Nat Commun. 2020 Jan 16;11(1):309 [PMID: 31949154]
  47. ACS Synth Biol. 2019 Sep 20;8(9):2174-2185 [PMID: 31461261]
  48. Front Microbiol. 2015 Oct 14;6:1118 [PMID: 26528266]
  49. Sci Rep. 2018 Jan 31;8(1):1926 [PMID: 29386622]
  50. Trends Biotechnol. 2020 Mar;38(3):241-253 [PMID: 31653446]
  51. Nat Commun. 2016 Apr 21;7:11274 [PMID: 27097658]
  52. Nat Commun. 2020 Mar 18;11(1):1440 [PMID: 32188849]
  53. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  54. J Bacteriol. 2019 Mar 13;201(7): [PMID: 30642990]
  55. Proc Biol Sci. 2009 Jun 7;276(1664):2065-70 [PMID: 19324788]
  56. Front Microbiol. 2015 Jun 16;6:615 [PMID: 26136742]
  57. Evolution. 2020 Oct;74(10):2392-2403 [PMID: 32888315]
  58. Appl Environ Microbiol. 2011 Sep;77(17):5934-44 [PMID: 21764952]
  59. Appl Environ Microbiol. 2018 Mar 19;84(7): [PMID: 29427429]
  60. J Microbiol. 2016 Dec;54(12):823-831 [PMID: 27888459]
  61. Bioinformatics. 2008 Jul 1;24(13):1556-8 [PMID: 18453552]
  62. J Mol Biol. 2016 Feb 27;428(5 Pt B):837-61 [PMID: 26522937]
  63. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  64. J Agric Food Chem. 2020 May 6;68(18):5024-5038 [PMID: 32255613]
  65. J Biotechnol. 2014 Jul 20;182-183:61-7 [PMID: 24815194]
  66. PLoS Comput Biol. 2014 Jul 17;10(7):e1003726 [PMID: 25033033]
  67. Curr Opin Microbiol. 2014 Apr;18:72-7 [PMID: 24632350]
  68. J Bacteriol. 2012 Nov;194(21):5991-3 [PMID: 23045501]
  69. Biochim Biophys Acta. 2011 Oct;1810(10):978-88 [PMID: 21689729]
  70. Front Microbiol. 2020 Jun 26;11:1424 [PMID: 32676064]
  71. Nat Biotechnol. 2018 Jul 6;36(7):566-569 [PMID: 29979655]
  72. PLoS Comput Biol. 2016 Sep 13;12(9):e1005079 [PMID: 27623159]
  73. FEMS Microbiol Lett. 2014 Aug;357(2):195-200 [PMID: 24985365]
  74. ISME J. 2015 Nov;9(11):2515-26 [PMID: 25909977]
  75. BMC Ecol. 2012 Jul 30;12:14 [PMID: 22846071]
  76. Science. 2018 Aug 3;361(6401):469-474 [PMID: 30072533]
  77. Mol Syst Biol. 2007;3:92 [PMID: 17353934]
  78. Environ Microbiol. 2014 Jun;16(6):1472-81 [PMID: 24274586]
  79. mSystems. 2017 Nov 14;2(6): [PMID: 29152587]
  80. Comput Struct Biotechnol J. 2020 Mar 30;18:1249-1258 [PMID: 32551031]
  81. Nat Rev Microbiol. 2018 Jun;16(6):383-390 [PMID: 29599459]
  82. Appl Environ Microbiol. 1985 Jan;49(1):1-7 [PMID: 3883894]
  83. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  84. ISME J. 2016 Nov;10(11):2557-2568 [PMID: 27022995]
  85. Microbiol Mol Biol Rev. 2019 Mar 13;83(2): [PMID: 30867232]
  86. J Bacteriol. 1974 Sep;119(3):736-47 [PMID: 4604283]
  87. Nat Genet. 2018 Jan;50(1):138-150 [PMID: 29255260]

Word Cloud

Created with Highcharts 10.0.0communitiesmicrobialcommunitycanmetabolicgrowthindividualmodelanalysisstrainsinteractionMicrobialplantcontributeformshapingisolatescombinedinsightsinteractionsbacterialmembershipbalanceexchangessyntheticcolonizetissueshostfunctionmemberswellunderstoodSyntheticdefinedservevaluablesystemsuncoveringorganizationalprinciplesUsinggenome-definedorganismssystematiccomputationally-basednetworkreconstructionleadmechanisticspeciesstudy10isolatedrhizospherepassagedtwodifferentmediaenvironmentsstablerelativeabundancesstabilizedaround5cyclesresultedjustdominantdependedmediumunravelunderlyingfluxusedidentifypotentialinvolvedanalysescomplementedcurvespairwisescreensmetaproteomicsfastrateidentifiedonefactorprovideadvantagemaintainingpresenceFinalselectionalsodependselectiveantagonisticrelationshipsRevealingmechanismsamongplant-associatedmicroorganismsprovidesstrategiesengineeringpotentiallyincreasediseaseresistancedecipheringpotentialswillenabledesigndesiredbiologicalfunctionsFormationcharacterizationmodelingemergentFluxGenome-scaleMetabolicMetaproteomicsRhizospherebacteria

Similar Articles

Cited By