The environmental context of inducible HSP70 expression in Eastern Brook Trout.

Bao V Nguyen, Brigid O'Donnell, Amy M Villamagna
Author Information
  1. Bao V Nguyen: Molecular and Cellular Biology, University of Massachusetts - Amherst, MA, USA.
  2. Brigid O'Donnell: Biological Sciences, Plymouth State University, NH, USA.
  3. Amy M Villamagna: Environmental Science & Policy, Plymouth State University, NH, USA.

Abstract

Much research has focused on the population-level effects of climate change on Eastern Brook Trout (). While some studies have considered here sub-lethal stress caused by warming waters, the role of multiple, interacting stressors remains largely unexplored. We used inducible heat shock protein 70 (HSP70) as a molecular biomarker to assess response of Eastern Brook Trout in headwater streams to multiple potential stressors, including temperature. Over 7 sampling events during 2018 and 2019, we sampled 141 fish and found that HSP70 expression and 3-day mean water temperature exhibited a quadratic relationship ( -adj = 0.68). Further analyses showed that HSP70 expression was explained by temperature, relative water level and their interaction ( -adj = 0.75), while fish size and capture location were not factors. We observed a significant increase in HSP70 expression during periods of low relative water level with warm temperatures (~18°C) and also during high relative water level with cold temperatures (~8°C). Our results suggest that temperatures at the edges of the preferred range coupled with relative water level might act together to trigger the cellular stress response in Eastern Brook Trout and that there is greater variation in response at colder temperatures. These findings reinforce the need to consider complex, interactive stressors in influencing the health and persistence of Eastern Brook Trout populations into the future.

Keywords

References

  1. Science. 2006 Sep 8;313(5792):1396-7 [PMID: 16959994]
  2. Cell Stress Chaperones. 1997 Mar;2(1):60-71 [PMID: 9250396]
  3. PLoS One. 2014 Jan 27;9(1):e87293 [PMID: 24475266]
  4. Conserv Physiol. 2015 Apr 28;3(1):cov017 [PMID: 27293702]
  5. Ecology. 2012 Jul;93(7):1527-39 [PMID: 22919900]
  6. J Fish Biol. 2018 Sep;93(3):550-559 [PMID: 29956316]
  7. Comp Biochem Physiol B Biochem Mol Biol. 2005 Dec;142(4):426-31 [PMID: 16257553]
  8. Ann Rev Mar Sci. 2016;8:357-78 [PMID: 26359817]
  9. FEBS Lett. 1996 Mar 18;382(3):261-4 [PMID: 8605981]
  10. Integr Comp Biol. 2019 Aug 1;59(2):237-242 [PMID: 31340006]
  11. Comp Biochem Physiol A Mol Integr Physiol. 2003 Mar;134(3):655-63 [PMID: 12600675]
  12. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  13. J Appl Ecol. 2009 Feb;46(1):154-163 [PMID: 19536343]
  14. J Exp Zool. 1999 Aug 1;284(3):286-98 [PMID: 10404120]
  15. Ecol Appl. 2015 Jul;25(5):1397-419 [PMID: 26485964]
  16. Aquat Toxicol. 2014 Sep;154:87-96 [PMID: 24874008]
  17. Life Sci. 2010 Mar 13;86(11-12):377-84 [PMID: 20060844]
  18. Environ Pollut. 2005 Jan;133(2):333-42 [PMID: 15519464]
  19. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  20. Annu Rev Genet. 1988;22:631-77 [PMID: 2853609]
  21. Comp Biochem Physiol B Biochem Mol Biol. 2003 Oct;136(2):275-82 [PMID: 14529753]
  22. Annu Rev Physiol. 2005;67:225-57 [PMID: 15709958]
  23. Anal Biochem. 2010 Jun 15;401(2):318-20 [PMID: 20206115]
  24. Gene. 2002 Aug 7;295(2):173-83 [PMID: 12354651]
  25. Physiol Biochem Zool. 2014 Jan-Feb;87(1):15-29 [PMID: 24457918]
  26. J Exp Biol. 2001 Oct;204(Pt 20):3571-9 [PMID: 11707506]
  27. Comp Biochem Physiol Part D Genomics Proteomics. 2006 Jun;1(2):238-52 [PMID: 20483255]
  28. J Anim Ecol. 2011 Jul;80(4):844-53 [PMID: 21401593]
  29. J Exp Biol. 2006 Aug;209(Pt 15):2859-72 [PMID: 16857869]
  30. Comp Biochem Physiol A Mol Integr Physiol. 2013 May;165(1):79-88 [PMID: 23462223]
  31. Physiol Biochem Zool. 2008 Nov-Dec;81(6):709-17 [PMID: 18844483]
  32. Conserv Physiol. 2020 Feb 18;8(1):coaa005 [PMID: 32099655]
  33. J Fish Biol. 2011 Jul;79(1):256-79 [PMID: 21722123]
  34. Genes Dev. 1992 Aug;6(8):1402-13 [PMID: 1644286]
  35. Proc Biol Sci. 2010 Mar 22;277(1683):905-13 [PMID: 19923129]
  36. BMC Genomics. 2013 Jun 05;14:375 [PMID: 23738713]
  37. J Comp Physiol B. 2015 Apr;185(3):303-13 [PMID: 25588676]
  38. J Exp Biol. 2017 Nov 1;220(Pt 21):3976-3987 [PMID: 29093190]
  39. J Exp Biol. 2004 Jan;207(Pt 1):15-9 [PMID: 14638828]
  40. Am J Physiol. 1980 Mar;238(3):R147-59 [PMID: 7369389]
  41. Sci Total Environ. 2019 Sep 20;684:371-380 [PMID: 31154210]

Word Cloud

Created with Highcharts 10.0.0EasternBrookTroutHSP70waterstressorsresponseexpressionrelativeleveltemperaturesstressmultipletemperatureclimatechangeinducibleheatshockfish-adj = 0Muchresearchfocusedpopulation-leveleffectsstudiesconsideredsub-lethalcausedwarmingwatersroleinteractingremainslargelyunexploredusedprotein70molecularbiomarkerassessheadwaterstreamspotentialincluding7samplingevents20182019sampled141found3-daymeanexhibitedquadraticrelationship68analysesshowedexplainedinteraction75sizecapturelocationfactorsobservedsignificantincreaseperiodslowwarm~18°Calsohighcold~8°CresultssuggestedgespreferredrangecoupledmightacttogethertriggercellulargreatervariationcolderfindingsreinforceneedconsidercomplexinteractiveinfluencinghealthpersistencepopulationsfutureenvironmentalcontextCellularSalvelinusfontinalisproteins

Similar Articles

Cited By