Inpainting Cropped Diffusion MRI using Deep Generative Models.

Rafi Ayub, Qingyu Zhao, M J Meloy, Edith V Sullivan, Adolf Pfefferbaum, Ehsan Adeli, Kilian M Pohl
Author Information
  1. Rafi Ayub: Stanford University, Stanford, CA, USA.
  2. Qingyu Zhao: Stanford University, Stanford, CA, USA.
  3. M J Meloy: University of Califonia, San Diego, La Jolla, CA, USA.
  4. Edith V Sullivan: Stanford University, Stanford, CA, USA.
  5. Adolf Pfefferbaum: Stanford University, Stanford, CA, USA.
  6. Ehsan Adeli: Stanford University, Stanford, CA, USA.
  7. Kilian M Pohl: Stanford University, Stanford, CA, USA.

Abstract

Minor artifacts introduced during image acquisition are often negligible to the human eye, such as a confined field of view resulting in MRI missing the top of the head. This cropping artifact, however, can cause suboptimal processing of the MRI resulting in data omission or decreasing the power of subsequent analyses. We propose to avoid data or quality loss by restoring these missing regions of the head via variational autoencoders (VAE), a deep generative model that has been previously applied to high resolution image reconstruction. Based on diffusion weighted images (DWI) acquired by the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA), we evaluate the accuracy of inpainting the top of the head by common autoencoder models (U-Net, VQVAE, and VAE-GAN) and a custom model proposed herein called U-VQVAE. Our results show that U-VQVAE not only achieved the highest accuracy, but also resulted in MRI processing producing lower fractional anisotropy (FA) in the supplementary motor area than FA derived from the original MRIs. Lower FA implies that inpainting reduces noise in processing DWI and thus increase the quality of the generated results. The code is available at https://github.com/RdoubleA/DWIinpainting.

References

  1. J Magn Reson Imaging. 2006 Sep;24(3):478-88 [PMID: 16897692]
  2. Front Neurosci. 2013 Mar 12;7:31 [PMID: 23486659]
  3. IEEE Trans Image Process. 2015 Nov;24(11):3498-511 [PMID: 26087492]
  4. Neuroimage. 2016 Apr 15;130:194-213 [PMID: 26872408]
  5. IEEE Trans Vis Comput Graph. 2018 Jun;24(6):2023-2036 [PMID: 28500005]
  6. Neuroimage. 2009 Oct 15;48(1):63-72 [PMID: 19573611]
  7. Neuroimage. 2012 Oct 1;62(4):2222-31 [PMID: 22366334]
  8. J Magn Reson Imaging. 2007 Sep;26(3):756-67 [PMID: 17729339]
  9. Neuroimage. 2016 Jan 1;124(Pt B):1102-1107 [PMID: 25934470]
  10. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651 [PMID: 27244717]
  11. IEEE Trans Image Process. 2004 Apr;13(4):600-12 [PMID: 15376593]
  12. Hum Brain Mapp. 2010 May;31(5):798-819 [PMID: 20017133]

Grants

  1. R01 AA005965/NIAAA NIH HHS
  2. U24 AA021697/NIAAA NIH HHS
  3. R37 AA005965/NIAAA NIH HHS
  4. R37 AA010723/NIAAA NIH HHS
  5. U01 AA021697/NIAAA NIH HHS
  6. R01 AA010723/NIAAA NIH HHS

Word Cloud

Created with Highcharts 10.0.0MRIheadprocessingFAimageresultingmissingtopdataqualitymodelDWIaccuracyinpaintingU-VQVAEresultsMinorartifactsintroducedacquisitionoftennegligiblehumaneyeconfinedfieldviewcroppingartifacthowevercancausesuboptimalomissiondecreasingpowersubsequentanalysesproposeavoidlossrestoringregionsviavariationalautoencodersVAEdeepgenerativepreviouslyappliedhighresolutionreconstructionBaseddiffusionweightedimagesacquiredNationalConsortiumAlcoholNeurodevelopmentAdolescenceNCANDAevaluatecommonautoencodermodelsU-NetVQVAEVAE-GANcustomproposedhereincalledshowachievedhighestalsoresultedproducinglowerfractionalanisotropysupplementarymotorareaderivedoriginalMRIsLowerimpliesreducesnoisethusincreasegeneratedcodeavailablehttps://githubcom/RdoubleA/DWIinpaintingInpaintingCroppedDiffusionusingDeepGenerativeModels

Similar Articles

Cited By