Inhibition of Gabrp reduces the differentiation of airway epithelial progenitor cells into goblet cells.

An Wang, Qiuyang Zhang, Yongmei Wang, Xue Li, Kuan Li, Yu Li, Jianhai Wang, Li Li, Huaiyong Chen
Author Information
  1. An Wang: Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China.
  2. Qiuyang Zhang: Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.
  3. Yongmei Wang: Department of Pathology, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China.
  4. Xue Li: Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.
  5. Kuan Li: Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.
  6. Yu Li: Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.
  7. Jianhai Wang: Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.
  8. Li Li: Department of Respiratory Medicine, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China.
  9. Huaiyong Chen: Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China.

Abstract

Bronchial asthma is an intractable pulmonary disease that affects millions of individuals worldwide, with the overproduction of mucus contributing to high morbidity and mortality. Gamma-aminobutyric acid (GABA) is associated with goblet cell hyperplasia in the lungs of primate models and Club cells serve as airway epithelial progenitor cells that may differentiate into goblet and ciliated cells. In the present study, it was investigated whether the GABAA receptor pi (Gabrp) is essential for Club cell proliferation and differentiation in mice. Validation of microarray analysis results by reverse transcription-quantitative PCR (RT-qPCR) demonstrated that Gabrp is highly expressed in mouse Club cells. Predominant expression of Gabrp in mouse Club cells was further confirmed based on naphthalene-induced Club cell injury in mice, with organoid cultures indicating significant reductions in the organoid-forming ability of mouse Club cells in the presence of Gabrp antagonist bicuculline methiodide (BMI). Furthermore, the RT-qPCR results indicated that the mRNA levels of chloride channel accessory 3, pseudogene (Clca3p), mucin (Muc)5Ac and Muc5B were significantly decreased in BMI organoid cultures. These results suggested that blocking GABA signaling through Gabrp inhibits mouse Club cell proliferation, as well as differentiation into goblet cells. Therefore, targeting GABA/Gabrp signaling may represent a promising strategy for treating goblet cell hyperplasia in bronchial asthma.

Keywords

References

  1. Am J Respir Cell Mol Biol. 2008 Mar;38(3):337-45 [PMID: 17921358]
  2. Stem Cells. 2012 Sep;30(9):1948-60 [PMID: 22696116]
  3. Cell Death Dis. 2019 Nov 20;10(12):875 [PMID: 31748541]
  4. J Clin Invest. 2009 Oct;119(10):2914-24 [PMID: 19759516]
  5. Am J Respir Cell Mol Biol. 2009 Mar;40(3):340-8 [PMID: 18757308]
  6. PLoS One. 2010 Feb 09;5(2):e9098 [PMID: 20161732]
  7. Am J Physiol Lung Cell Mol Physiol. 2012 Feb 1;302(3):L343-51 [PMID: 22140071]
  8. Am J Respir Crit Care Med. 2002 Dec 1;166(11):1498-509 [PMID: 12406855]
  9. Eur Respir J. 1996 Sep;9(9):1913-22 [PMID: 8880112]
  10. Adv Exp Med Biol. 2019;1124:381-422 [PMID: 31183836]
  11. Stem Cell Reports. 2018 May 8;10(5):1579-1595 [PMID: 29657097]
  12. Allergy Asthma Proc. 2003 Mar-Apr;24(2):79-83 [PMID: 12776439]
  13. Paediatr Respir Rev. 2004;5 Suppl A:S35-40 [PMID: 14980241]
  14. Am J Physiol Lung Cell Mol Physiol. 2019 Aug 1;317(2):L259-L270 [PMID: 31116580]
  15. Gene Expr Patterns. 2008 Jul;8(6):397-403 [PMID: 18539546]
  16. Stem Cells. 2008 May;26(5):1337-46 [PMID: 18356571]
  17. Can J Physiol Pharmacol. 1985 Nov;63(11):1465-70 [PMID: 3000559]
  18. Neurosci Lett. 1997 Aug 1;231(1):13-6 [PMID: 9280156]
  19. Am J Physiol Cell Physiol. 2020 Oct 1;319(4):C675-C693 [PMID: 32783658]
  20. BMC Genomics. 2007 Dec 10;8:455 [PMID: 18070348]
  21. Am J Physiol Lung Cell Mol Physiol. 2009 Feb;296(2):L257-66 [PMID: 19074559]
  22. Am J Pathol. 2003 Jun;162(6):2069-78 [PMID: 12759261]
  23. Toxicol Sci. 2019 Aug 1;170(2):536-548 [PMID: 31020322]
  24. Stem Cells. 2020 Mar;38(3):437-450 [PMID: 31758827]
  25. Annu Rev Biochem. 2003;72:743-81 [PMID: 12676796]
  26. Steroids. 2014 Feb;80:44-50 [PMID: 24333449]
  27. Allergol Int. 2018 Jan;67(1):12-17 [PMID: 28941636]
  28. Am J Respir Cell Mol Biol. 2004 Oct;31(4):382-94 [PMID: 15191915]
  29. Allergy. 2018 May;73(5):993-1002 [PMID: 29197105]
  30. Epilepsy Res. 2017 Feb;130:21-26 [PMID: 28107659]
  31. Chin Med J (Engl). 2020 Sep 17;134(2):234-236 [PMID: 32947367]
  32. Int J Stem Cells. 2016 May 30;9(1):31-5 [PMID: 27426083]
  33. Am J Respir Cell Mol Biol. 2019 Jun;60(6):687-694 [PMID: 30571139]
  34. Am J Physiol. 1984 Nov;247(5 Pt 1):C472-7 [PMID: 6093574]
  35. mBio. 2019 May 7;10(3): [PMID: 31064833]
  36. Am J Respir Cell Mol Biol. 2012 Sep;47(3):349-57 [PMID: 22493011]
  37. Am J Respir Cell Mol Biol. 2001 Mar;24(3):272-81 [PMID: 11245626]
  38. Nat Med. 2012 May 04;18(5):684-92 [PMID: 22561832]
  39. Am J Respir Cell Mol Biol. 2011 Jun;44(6):794-803 [PMID: 20656948]
  40. J Immunol. 2005 Jul 1;175(1):404-12 [PMID: 15972674]
  41. Nat Med. 2007 Jul;13(7):862-7 [PMID: 17589520]
  42. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17531-6 [PMID: 23047698]
  43. Development. 2017 Mar 15;144(6):986-997 [PMID: 28292845]
  44. Am J Respir Cell Mol Biol. 1996 Oct;15(4):540-50 [PMID: 8879188]
  45. Ann N Y Acad Sci. 2000;923:43-58 [PMID: 11193778]
  46. FASEB J. 2017 Sep;31(9):4117-4128 [PMID: 28566470]
  47. Ther Adv Respir Dis. 2011 Aug;5(4):255-73 [PMID: 21372121]
  48. PLoS Biol. 2020 Nov 20;18(11):e3000675 [PMID: 33216742]
  49. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1585-91 [PMID: 10228131]
  50. Development. 2010 Mar;137(5):825-33 [PMID: 20147383]
  51. J Clin Invest. 2019 Apr 1;129(4):1504-1515 [PMID: 30741719]
  52. Am J Respir Crit Care Med. 2009 Oct 15;180(8):701-12 [PMID: 19574443]
  53. J Thorac Dis. 2018 Jan;10(1):202-211 [PMID: 29600050]
  54. Brain Stimul. 2015 Jul-Aug;8(4):742-50 [PMID: 25892002]

Word Cloud

Created with Highcharts 10.0.0cellsClubGabrpgobletcelldifferentiationmouseasthmaairwayprogenitorproliferationresultsGABAhyperplasiaepithelialmaymiceRT-qPCRorganoidculturesBMIsignalingBronchialintractablepulmonarydiseaseaffectsmillionsindividualsworldwideoverproductionmucuscontributinghighmorbiditymortalityGamma-aminobutyricacidassociatedlungsprimatemodelsservedifferentiateciliatedpresentstudyinvestigatedwhetherGABAAreceptorpiessentialValidationmicroarrayanalysisreversetranscription-quantitativePCRdemonstratedhighlyexpressedPredominantexpressionconfirmedbasednaphthalene-inducedinjuryindicatingsignificantreductionsorganoid-formingabilitypresenceantagonistbicucullinemethiodideFurthermoreindicatedmRNAlevelschloridechannelaccessory3pseudogeneClca3pmucinMuc5AcMuc5BsignificantlydecreasedsuggestedblockinginhibitswellThereforetargetingGABA/GabrprepresentpromisingstrategytreatingbronchialInhibitionreduces

Similar Articles

Cited By