Aberrant visual population receptive fields in human albinism.

Ethan J Duwell, Erica N Woertz, Jedidiah Mathis, Joseph Carroll, Edgar A DeYoe
Author Information
  1. Ethan J Duwell: Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
  2. Erica N Woertz: Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
  3. Jedidiah Mathis: Department of Neurology, Medical College of Wisconsin, USA.
  4. Joseph Carroll: Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
  5. Edgar A DeYoe: Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.

Abstract

Retinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate aberrantly at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous functional magnetic resonance imaging (fMRI) studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate locations mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields (pRFs). Here, we used pRF modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1 to V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with unequivocal dual pRFs consistently corresponding to, but not fully coextensive with, regions of hemifield overlap. These dual pRFs were typically positioned at locations roughly mirrored across the vertical meridian and were uniquely clustered within a portion of the visual field for each subject.

References

  1. J Neurosci. 2003 Oct 1;23(26):8921-30 [PMID: 14523094]
  2. Science. 2001 Nov 9;294(5545):1350-4 [PMID: 11701930]
  3. Ophthalmology. 2018 Dec;125(12):1953-1960 [PMID: 30098354]
  4. Invest Ophthalmol Vis Sci. 2014 May 20;55(7):4186-98 [PMID: 24845642]
  5. Neuroimage. 2019 Apr 15;190:224-231 [PMID: 29524626]
  6. Neuron. 2007 Oct 25;56(2):366-83 [PMID: 17964252]
  7. Nat Neurosci. 2002 Apr;5(4):364-70 [PMID: 11914722]
  8. J Neurosci. 2007 May 16;27(20):5326-37 [PMID: 17507555]
  9. Magn Reson Med. 1993 Aug;30(2):161-73 [PMID: 8366797]
  10. Cereb Cortex. 2010 Feb;20(2):411-24 [PMID: 19502476]
  11. Neuron. 2012 Aug 9;75(3):393-401 [PMID: 22884323]
  12. Electroencephalogr Clin Neurophysiol. 1981 Dec;52(6):595-603 [PMID: 6172258]
  13. Science. 1995 May 12;268(5212):889-93 [PMID: 7754376]
  14. Sci Rep. 2019 Jan 24;9(1):645 [PMID: 30679655]
  15. Vision Res. 2017 Jan;130:57-66 [PMID: 27887888]
  16. Neuroimage. 2020 Apr 1;209:116423 [PMID: 31811903]
  17. Cortex. 2020 Jul;128:107-123 [PMID: 32334151]
  18. Pigment Cell Melanoma Res. 2014 Jan;27(1):11-8 [PMID: 24066960]
  19. J Neurosci. 2009 Aug 26;29(34):10638-52 [PMID: 19710316]
  20. Am J Ophthalmol. 2003 Dec;136(6):1067-78 [PMID: 14644217]
  21. Cereb Cortex. 1997 Mar;7(2):181-92 [PMID: 9087826]
  22. Hum Mutat. 1999;13(2):99-115 [PMID: 10094567]
  23. J Neurosci. 2015 Mar 25;35(12):5030-42 [PMID: 25810532]
  24. Neuroimage. 2018 Jan 1;164:59-66 [PMID: 28017921]
  25. Neuroimage. 2008 Jan 15;39(2):647-60 [PMID: 17977024]
  26. Sci Rep. 2017 Jun 30;7(1):4415 [PMID: 28667292]
  27. Ophthalmology. 2019 Jun;126(6):888-907 [PMID: 30653986]
  28. Neuroimage. 2019 Nov 15;202:116105 [PMID: 31422172]
  29. Arch Ophthalmol. 1991 Jun;109(6):816-24 [PMID: 2043069]
  30. Br J Ophthalmol. 2019 Sep;103(9):1239-1247 [PMID: 30472657]
  31. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  32. Neuropsychologia. 2010 Nov;48(13):3834-45 [PMID: 20863844]
  33. Vision Res. 2009 Jun;49(10):1037-44 [PMID: 19533912]
  34. J Neurophysiol. 2009 Nov;102(5):2704-18 [PMID: 19587323]
  35. J Neurosci. 2007 Oct 31;27(44):11896-911 [PMID: 17978030]
  36. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2382-6 [PMID: 8637882]
  37. Neuroimage. 2003 Jun;19(2 Pt 1):226-32 [PMID: 12814573]
  38. Trends Cogn Sci. 2009 Nov;13(11):488-95 [PMID: 19758835]
  39. Vision Res. 2011 Apr 13;51(7):718-37 [PMID: 20692278]
  40. J Vis. 2020 Jun 3;20(6):10 [PMID: 32543650]
  41. Hum Brain Mapp. 2014 Oct;35(10):5093-105 [PMID: 24771411]
  42. Invest Ophthalmol Vis Sci. 2005 Oct;46(10):3892-8 [PMID: 16186379]
  43. Hum Mutat. 2013 Jun;34(6):827-35 [PMID: 23504663]
  44. Neuroimage. 2003 Feb;18(2):494-504 [PMID: 12595202]
  45. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):818-24 [PMID: 9448246]
  46. J Neurosci. 2006 Jul 26;26(30):7962-73 [PMID: 16870741]
  47. Trends Neurosci. 2015 Jan;38(1):55-65 [PMID: 25448619]
  48. Eur J Neurosci. 2007 Jan;25(2):503-11 [PMID: 17284192]
  49. Invest Ophthalmol Vis Sci. 2018 Nov 1;59(13):5336-5348 [PMID: 30398625]
  50. Dev Neurobiol. 2017 Jul;77(7):844-860 [PMID: 27907266]
  51. Metab Pediatr Syst Ophthalmol (1985). 1994;17(1-4):5-9 [PMID: 8719278]
  52. J Comp Neurol. 1984 Jun 20;226(2):165-83 [PMID: 6330179]
  53. Acta Psychol (Amst). 2001 Apr;107(1-3):229-47 [PMID: 11388137]

Grants

  1. R01 EY024969/NEI NIH HHS
  2. TL1 TR001437/NCATS NIH HHS
  3. T32 GM080202/NIGMS NIH HHS
  4. T32 EY014537/NEI NIH HHS
  5. C06 RR016511/NCRR NIH HHS
  6. P30 EY001931/NEI NIH HHS

MeSH Term

Albinism
Brain Mapping
Humans
Magnetic Resonance Imaging
Optic Chiasm
Visual Cortex
Visual Fields
Visual Pathways

Word Cloud

Created with Highcharts 10.0.0visualalbinismcortexhumanvoxelspRFsdualrightlefthemifieldsHoweversuperimposedrepresentationsimaginghemifieldlocationsmirroredacrossverticalmeridiansinglepopulationreceptivefieldspRFsubjectsRetinotopicorganizationfundamentalfeaturethoughtplayvitalroleencodingspatialinformationOneimportantaspectnormalretinotopyrepresentationcontralateralmanytemporalretinalafferentsdecussateaberrantlyopticchiasmresultingpartiallyoppositehemispherePreviousfunctionalmagneticresonancefMRIstudiessuggestmirror-symmetricmannerproducerespondtwoseparateyetclearretino-corticalmiswiringmanifestslevelvoxelusedmodelingfitmodelsresponsesareasV1V3fivefoundcontrolssizableclustersunequivocalconsistentlycorrespondingfullycoextensiveregionsoverlaptypicallypositionedroughlyuniquelyclusteredwithinportionfieldsubjectAberrant

Similar Articles

Cited By