A Bayesian Framework for Patient-Level Partitioned Survival Cost-Utility Analysis.

Andrea Gabrio
Author Information
  1. Andrea Gabrio: Department of Statistical Science, University College London, London, UK. ORCID

Abstract

Patient-level health economic data collected alongside clinical trials are an important component of the process of technology appraisal. For end-of-life treatments, the modeling of cost-effectiveness data may involve some form of partitioned survival analysis, in which measures of quality of life and survival for pre- and postprogression periods are combined to generate aggregate measures of clinical benefits (e.g., quality-adjusted survival). In addition, resource use data are often collected and costs are calculated for each type of health service (e.g., treatment, hospital, or adverse events costs). A critical problem in these analyses is that effectiveness and cost data present some complexities, such as nonnormality, spikes, and missingness, which should be addressed using appropriate methods to avoid biased results. This article proposes a general Bayesian framework that takes into account the complexities of trial-based partitioned survival cost-utility data to provide more adequate evidence for policy makers. Our approach is motivated by, and applied to, a working example based on data from a trial assessing the cost-effectiveness of a new treatment for patients with advanced non-small-cell lung cancer.[Box: see text].

Keywords

References

  1. Value Health. 2015 Mar;18(2):161-72 [PMID: 25773551]
  2. Health Econ. 2011 Aug;20(8):897-916 [PMID: 20799344]
  3. Med Decis Making. 2005 Jul-Aug;25(4):416-23 [PMID: 16061893]
  4. Med Decis Making. 2010 Mar-Apr;30(2):163-75 [PMID: 19675321]
  5. Health Econ. 2001 Jun;10(4):303-15 [PMID: 11400253]
  6. Health Econ. 2018 Nov;27(11):1670-1683 [PMID: 29969834]
  7. J Health Econ. 1999 Jun;18(3):341-64 [PMID: 10537899]
  8. Health Econ. 2007 Nov;16(11):1133-57 [PMID: 17910109]
  9. Health Econ. 2005 Apr;14(4):339-47 [PMID: 15736142]
  10. Health Econ. 2005 Dec;14(12):1217-29 [PMID: 15945043]
  11. Stat Med. 1990 Nov;9(11):1259-76 [PMID: 2277877]
  12. J R Stat Soc Ser A Stat Soc. 2020 Feb;183(2):607-629 [PMID: 34385761]
  13. J Stat Softw. 2017;76: [PMID: 36568334]
  14. Med Decis Making. 2012 Mar-Apr;32(2):350-61 [PMID: 22016450]
  15. Lancet Oncol. 2012 Nov;13(11):1161-70 [PMID: 23078958]
  16. Med Decis Making. 2017 May;37(4):427-439 [PMID: 27698003]
  17. Med Care. 1997 Nov;35(11):1095-108 [PMID: 9366889]
  18. Health Econ. 2003 Jan;12(1):33-49 [PMID: 12483759]
  19. Stat Med. 2019 Feb 10;38(3):480-496 [PMID: 30298525]
  20. Stat Med. 2014 May 20;33(11):1900-13 [PMID: 24343868]
  21. Health Econ. 1994 Sep-Oct;3(5):309-19 [PMID: 7827647]
  22. Med Decis Making. 1990 Jul-Sep;10(3):212-4 [PMID: 2115096]
  23. Stat Med. 2001 Mar 15;20(5):733-53 [PMID: 11241573]
  24. Stat Med. 2019 Apr 15;38(8):1399-1420 [PMID: 30565727]

MeSH Term

Bayes Theorem
Carcinoma, Non-Small-Cell Lung
Cost-Benefit Analysis
Humans
Lung Neoplasms
Quality of Life
Quality-Adjusted Life Years
Survival Analysis

Word Cloud

Created with Highcharts 10.0.0datasurvivalpartitionedBayesianhealtheconomiccollectedclinicalcost-effectivenessanalysismeasuresegcoststreatmentcomplexitiescost-utilityPatient-levelalongsidetrialsimportantcomponentprocesstechnologyappraisalend-of-lifetreatmentsmodelingmayinvolveformqualitylifepre-postprogressionperiodscombinedgenerateaggregatebenefitsquality-adjustedadditionresourceuseoftencalculatedtypeservicehospitaladverseeventscriticalproblemanalyseseffectivenesscostpresentnonnormalityspikesmissingnessaddressedusingappropriatemethodsavoidbiasedresultsarticleproposesgeneralframeworktakesaccounttrial-basedprovideadequateevidencepolicymakersapproachmotivatedappliedworkingexamplebasedtrialassessingnewpatientsadvancednon-small-celllungcancer[Box:seetext]FrameworkPatient-LevelPartitionedSurvivalCost-UtilityAnalysisstatisticsSTANevaluationshurdlemodelsmissing

Similar Articles

Cited By

No available data.