Backward joint model and dynamic prediction of survival with multivariate longitudinal data.

Fan Shen, Liang Li
Author Information
  1. Fan Shen: Department of Biostatistics and Data Science, The University of Texas School of Public Health, Dallas, Texas, USA. ORCID
  2. Liang Li: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ORCID

Abstract

An important approach to dynamic prediction of time-to-event outcomes using longitudinal data is based on modeling the joint distribution of longitudinal and time-to-event data. The widely used joint model for this purpose is the shared random effect model. Presumably, adding more longitudinal predictors improves the predictive accuracy. However, the shared random effect model can be computationally difficult or prohibitive when a large number of longitudinal variables are used. In this paper, we study an alternative way of modeling the joint distribution of longitudinal and time-to-event data. Under this formulation, the log-likelihood involves no more than one-dimensional integration, regardless of the number of longitudinal variables in the model. Therefore, this model is particularly suitable in dynamic prediction problems with large number of longitudinal predictors. The model fitting can be implemented with tractable and stable computation by using a combination of pseudo maximum likelihood estimation, Expectation-Maximization algorithm, and convex optimization. We evaluate the proposed methodology and its predictive accuracy with varying number of longitudinal variables using simulations and data from a primary biliary cirrhosis study.

Keywords

References

  1. Stat Med. 2007 May 10;26(10):2229-45 [PMID: 16900568]
  2. Stat Med. 2016 Feb 10;35(3):382-98 [PMID: 26376900]
  3. Stat Med. 1997 Jan 15-Feb 15;16(1-3):239-57 [PMID: 9004395]
  4. BMC Med Res Methodol. 2018 Jun 7;18(1):50 [PMID: 29879902]
  5. Stat Med. 2018 Sep 20;37(21):3106-3124 [PMID: 29766537]
  6. Biometrics. 2009 Sep;65(3):737-45 [PMID: 19173700]
  7. Biometrics. 2004 Dec;60(4):854-64 [PMID: 15606405]
  8. Biometrics. 2019 Mar;75(1):69-77 [PMID: 30178494]
  9. Biostatistics. 2008 Jul;9(3):419-31 [PMID: 18056686]
  10. Int J Biostat. 2018 Jan 31;14(1): [PMID: 29389664]
  11. Stat Methods Med Res. 2017 Aug;26(4):1787-1801 [PMID: 26059114]
  12. Stat Med. 2017 Dec 20;36(29):4692-4704 [PMID: 28833347]
  13. J Am Stat Assoc. 2018;113(521):357-368 [PMID: 30853735]
  14. Stat Methods Med Res. 2018 Aug;27(8):2264-2278 [PMID: 27895266]
  15. J Am Stat Assoc. 2018;113(522):582-592 [PMID: 30853736]
  16. Biometrics. 1989 Sep;45(3):939-55 [PMID: 2486189]
  17. BMC Med Res Methodol. 2018 Nov 16;18(1):138 [PMID: 30445915]
  18. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  19. Biometrics. 2018 Jun;74(2):685-693 [PMID: 29092100]
  20. Biometrics. 2015 Mar;71(1):102-113 [PMID: 25311240]
  21. Biometrics. 2011 Sep;67(3):819-29 [PMID: 21306352]
  22. Biometrics. 2019 Mar;75(1):153-162 [PMID: 30039528]
  23. Biometrics. 2017 Mar;73(1):83-93 [PMID: 27438160]
  24. Biometrics. 2005 Jun;61(2):379-91 [PMID: 16011684]
  25. Biometrics. 2016 Sep;72(3):907-16 [PMID: 26890381]

Grants

  1. P30 CA016672/NCI NIH HHS
  2. R01 DK118079/NIDDK NIH HHS
  3. R01 CA225646/NCI NIH HHS

MeSH Term

Algorithms
Humans
Longitudinal Studies
Probability

Word Cloud

Created with Highcharts 10.0.0longitudinalmodeldatajointdynamicpredictionnumbertime-to-eventusingmodelingpredictiveaccuracyvariablesdistributionusedsharedrandomeffectpredictorscanlargestudyalgorithmsurvivalmultivariateimportantapproachoutcomesbasedwidelypurposePresumablyaddingimprovesHowevercomputationallydifficultprohibitivepaperalternativewayformulationlog-likelihoodinvolvesone-dimensionalintegrationregardlessThereforeparticularlysuitableproblemsfittingimplementedtractablestablecomputationcombinationpseudomaximumlikelihoodestimationExpectation-MaximizationconvexoptimizationevaluateproposedmethodologyvaryingsimulationsprimarybiliarycirrhosisBackwardEManalysis

Similar Articles

Cited By