Abnormal hemispheric asymmetry of both brain function and structure in attention deficit/hyperactivity disorder: a meta-analysis of individual participant data.

Ningning He, Lena Palaniyappan, Zeqiang Linli, Shuixia Guo
Author Information
  1. Ningning He: MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, People's Republic of China. 201620100833@smail.hunnu.edu.cn. ORCID
  2. Lena Palaniyappan: Department of Psychiatry, University of Western Ontario, London, Ontario, Canada.
  3. Zeqiang Linli: MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, People's Republic of China.
  4. Shuixia Guo: MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, People's Republic of China. guoshuixia75@163.com.

Abstract

Aberration in the asymmetric nature of the human brain is associated with several mental disorders, including attention deficit/hyperactivity disorder (ADHD). In ADHD, these aberrations are thought to reflect key hemispheric differences in the functioning of attention, although the structural and functional bases of these defects are yet to be fully characterized. In this study, we applied a comprehensive meta-analysis to multimodal imaging datasets from 627 subjects (303 typically developing control [TDCs] and 324 patients with ADHD) with both resting-state functional and structural magnetic resonance imaging (MRI), from seven independent publicly available datasets of the ADHD-200 sample. We performed lateralization analysis and calculated the combined effects of ADHD on each of three cortical regional measures (grey matter volume - GMV, fractional amplitude of low frequency fluctuations at rest -fALFF, and regional homogeneity -ReHo). We found that compared with TDC, 68%,73% and 66% of regions showed statistically significant ADHD disorder effects on the asymmetry of GMV, fALFF, and ReHo, respectively, (false discovery rate corrected, q = 0.05). Forty-one percent (41%) of regions had both structural and functional abnormalities in asymmetry, located in the prefrontal, frontal, and subcortical cortices, and the cerebellum. Furthermore, brain asymmetry indices in these regions were higher in children with more severe ADHD symptoms, indicating a crucial pathoplastic role for asymmetry. Our findings highlight the functional asymmetry in ADHD which has (1) a strong structural basis, and thus is likely to be developmental in nature; and (2) is strongly linked to symptom burden and IQ and may carry a possible prognostic value for grading the severity of ADHD.

Keywords

References

  1. Akula, N., Baranova, A., Seto, D., Solka, J., Nalls, M. A., et al. (2011). A network-based approach to prioritize results from genome-wide association studies. PLoS One, 6(9), e24220. [PMID: 21915301]
  2. Algina, J., Keselman, H. J., & Penfield, R. D. (2005). An alternative to Cohen’s standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups case. Psychological Methods, 10(3), 317–328. [PMID: 16221031]
  3. Altarelli, I., Leroy, F., Monzalvo, K., Fluss, J., Billard, C., Dehaene-Lambertz, G., Galaburda, A. M., & Ramus, F. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping, 35(12), 5717–5735. [PMID: 25044828]
  4. An, L., Cao, Q., Sui, M., Sun, L., Zou, Q., Zang, Y., & Wang, Y. (2013a). Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: A resting-state fMRI study. Neuroscience Bulletin, 29(5), 603–613. [PMID: 23861089]
  5. An, L., Cao, X., Cao, Q., Sun, L., Yang, L., Zou, Q., et al. (2013b). Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacology, 38(7), 1287–1295. [PMID: 23340519]
  6. Aylward, E. H., Reiss, A. L., Reader, M. J., Singer, H. S., Brown, J. E., & Denckla, M. B. (1996). Basal ganglia volumes in children with attention-deficit hyperactivity disorder. Journal of Child Neurology, 11(2), 112–115. [PMID: 8881987]
  7. Bellec, P., Chu, C., François, C., Benhajali, Y., Margulies, D. S., & Craddock, R. C. (2017). The neuro bureau adhd-200 preprocessed repository. Neuroimage, 144(Pt B), 275. [PMID: 27423255]
  8. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.
  9. Bernfort, L., Nordfeldt, S., & Persson, J. (2008). ADHD from a socio-economic perspective. Acta Paediatrica, 97(2), 239–245. [PMID: 18254913]
  10. Boedhoe, P. S. W., Heymans, M. W., Schmaal, L., Abe, Y., Alonso, P., Ameis, S. H., et al. (2019). An empirical comparison of Meta- and mega-analysis with data from the ENIGMA obsessive-compulsive disorder working group. Frontiers in Neuroinformatics, 12.
  11. Castellanos, F. X., Giedd, J. N., Berquin, P. C., Walter, J. M., Sharp, W., Tran, T., Vaituzis, A. C., Blumenthal, J. D., Nelson, J., Bastain, T. M., Zijdenbos, A., Evans, A. C., & Rapoport, J. L. (2001). Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 58(3), 289–295. [PMID: 11231836]
  12. Cheng, W., Palaniyappan, L., Li, M., Kendrick, K. M., Zhang, J., Luo, Q., Liu, Z., Yu, R., Deng, W., Wang, Q., Ma, X., Guo, W., Francis, S., Liddle, P., Mayer, A. R., Schumann, G., Li, T., & Feng, J. (2015). Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophrenia, 1(1), 15016. [PMID: 27336032]
  13. Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10, 101–129.
  14. Couvy-Duchesne, B., Ebejer, J. L., Gillespie, N. A., Duffy, D. L., Hickie, I. B., Thompson, P. M., Martin, N. G., de Zubicaray, G. I., McMahon, K. L., Medland, S. E., & Wright, M. J. (2016). Head motion and inattention/hyperactivity share common genetic influences: Implications for fMRI studies of ADHD. PLoS One, 11(1), e0146271. [PMID: 26745144]
  15. Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48(2), 194–215. [PMID: 21575934]
  16. De Guibert, C., Maumet, C., Jannin, P., Ferré, J.-C., Tréguier, C., Barillot, C., et al. (2011). Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia). Brain, 134(10), 3044–3058. [PMID: 21719430]
  17. Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2013). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667. [PMID: 23774715]
  18. Douglas, P. K., Gutman, B., Anderson, A., Larios, C., Lawrence, K. E., Narr, K., Sengupta, B., Cooray, G., Douglas, D. B., Thompson, P. M., McGough, J. J., & Bookheimer, S. Y. (2018). Hemispheric brain asymmetry differences in youths with attention-deficit/hyperactivity disorder. NeuroImage: Clinical, 18, 744–752.
  19. DuPaul, G. J., Power, T. J., Anastopoulos, A. D., & Reid, R. (1998). ADHA rating scale-IV: Checklists, norms, and clinical interpretation. Guilford.
  20. Durston, S., van Belle, J., & de Zeeuw, P. (2011). Differentiating Frontostriatal and Fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biological Psychiatry, 69(12), 1178–1184. [PMID: 20965496]
  21. Egorova, N., Veldsman, M., Cumming, T., & Brodtmann, A. (2017). Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. NeuroImage: Clinical, 16, 116–124.
  22. Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135(3), 949–960. [PMID: 22350062]
  23. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The human Brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508–3526. [PMID: 27230218]
  24. Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J. K., Ramos-Quiroga, J. A., et al. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 15020.
  25. Fernández-Jaén, A., López-Martín, S., Albert, J., Fernández-Mayoralas, D. M., Fernández-Perrone, A. L., Tapia, D. Q., & Calleja-Pérez, B. (2014). Cortical thinning of temporal pole and orbitofrontal cortex in medication-naïve children and adolescents with ADHD. Psychiatry Research: Neuroimaging, 224(1), 8–13. [PMID: 25085707]
  26. Fortin, J.-P., Parker, D., Tunç, B., Watanabe, T., Elliott, M. A., Ruparel, K., Roalf, D. R., Satterthwaite, T. D., Gur, R. C., Gur, R. E., Schultz, R. T., Verma, R., & Shinohara, R. T. (2017). Harmonization of multi-site diffusion tensor imaging data. NeuroImage, 161, 149–170. [PMID: 28826946]
  27. Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J., McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., & Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104–120. [PMID: 29155184]
  28. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283. [PMID: 19339462]
  29. Frodl, T., & Skokauskas, N. (2011). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica, 125(2), 114–126. [PMID: 22118249]
  30. Gogtay, N., Giedd, J., & Rapoport, J. L. (2002). Brain development in healthy, hyperactive, and psychotic children. Archives of Neurology, 59(8), 1244–1248. [PMID: 12164719]
  31. Greven, C. U., Bralten, J., Mennes, M., O’Dwyer, L., van Hulzen, K. J. E., Rommelse, N., Schweren, L. J. S., Hoekstra, P. J., Hartman, C. A., Heslenfeld, D., Oosterlaan, J., Faraone, S. V., Franke, B., Zwiers, M. P., Arias-Vasquez, A., & Buitelaar, J. K. (2015). Developmentally stable whole-brain volume reductions and developmentally sensitive caudate and putamen volume alterations in those with attention-deficit/hyperactivity disorder and their unaffected siblings. JAMA Psychiatry, 72(5), 490. [PMID: 25785435]
  32. Gurholt T. P., Lonning V., Nerland S., Jørgensen K. N., Haukvik1 U.K., Alloza C., … Agartz I. (2020). Intracranial and subcortical volumes in adolescents with early-onset psychosis: A multisite mega-analysis from the ENIGMA consortium. Human Brain Mapping, 1–12.
  33. Hale, T. S., Smalley, S. L., Dang, J., Hanada, G., Macion, J., McCracken, J. T., McGough, J. J., & Loo, S. K. (2010). ADHD familial loading and abnormal EEG alpha asymmetry in children with ADHD. Journal of Psychiatric Research, 44(9), 605–615. [PMID: 20006344]
  34. Haukvik, U. K., Gurholt, T. P., Nerland, S., Elvsåshagen, T., AkudjeduT, N., Alda, M., et al. (2020). In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from the enhancing Neuro imaging genetics through Meta-analysis bipolar disorder working group. Human Brain Mapping, 1–14.
  35. He, H., & Liu, T. T. (2012). A geometric view of global signal confounds in resting-state functional MRI. NeuroImage, 59(3), 2339–2348. [PMID: 21982929]
  36. Hedges, L. V., & Olkin, I. (1985). Statistical methods for metaanalysis. Academic Press.
  37. Hill, D. E., Yeo, R. A., Campbell, R. A., Hart, B., Vigil, J., & Brooks, W. (2003). Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology, 17(3), 496–506. https://doi.org/10.1037/0894-4105.17.3.496 . [DOI: 10.1037/0894-4105.17.3.496]
  38. Hoogman, M., Bralten, J., Hibar, D. P., Mennes, M., Zwiers, M. P., Schweren, L. S. J., et al. (2017). Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. The Lancet Psychiatry, 4(4), 310–319. [PMID: 28219628]
  39. Hwang, D., Rust, A. G., Ramsey, S., Smith, J. J., Leslie, D. M., Weston, A. D., de Atauri, P., Aitchison, J. D., Hood, L., Siegel, A. F., & Bolouri, H. (2005). A data integration methodology for systems biology. Proceedings of the National Academy of Sciences, 102(48), 17296–17301.
  40. Hynd, G. W., Hern, K. L., Novey, E. S., Eliopulos, D., Marshall, R., Gonzalez, J. J., & Voeller, K. K. (1993). Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus. Journal of Child Neurology, 8, 339–347. [PMID: 8228029]
  41. Ivanov, I., Murrough, J. W., Bansal, R., Hao, X., & Peterson, B. S. (2013). Cerebellar morphology and the effects of stimulant medications in youths with attention deficit-hyperactivity disorder. Neuropsychopharmacology, 39(3), 718–726. https://doi.org/10.1038/npp.2013.257 . [DOI: 10.1038/npp.2013.257]
  42. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. [PMID: 12377157]
  43. Kendall, M., & Gibbons, J. D. (1990). Rank correlation methods. Oxford Univ.
  44. Keune, P. M., Wiedemann, E., Schneidt, A., & Schönenberg, M. (2015). Frontal brain asymmetry in adult attention-deficit/hyperactivity disorder (ADHD): Extending the motivational dysfunction hypothesis. Clinical Neurophysiology, 126(4), 711–720. [PMID: 25097090]
  45. Kochunov, P., Jahanshad, N., Sprooten, E., Nichols, T. E., Mandl, R. C., Almasy, L., Booth, T., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., Dimitrova, R., Duggirala, R., Fox, P. T., Elliot Hong, L., Landman, B. A., Lemaitre, H., Lopez, L. M., Martin, N. G., McMahon, K. L., Mitchell, B. D., Olvera, R. L., Peterson, C. P., Starr, J. M., Sussmann, J. E., Toga, A. W., Wardlaw, J. M., Wright, M. J., Wright, S. N., Bastin, M. E., McIntosh, A. M., Boomsma, D. I., Kahn, R. S., den Braber, A., de Geus, E. J. C., Deary, I. J., Hulshoff Pol, H. E., Williamson, D. E., Blangero, J., van 't Ent, D., Thompson, P. M., & Glahn, D. C. (2014). Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling. NeuroImage, 95, 136–150. [PMID: 24657781]
  46. Kong, X. (2014). Head motion in children with ADHD during resting-state brain imaging. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.218v2 .
  47. Kong, X., Mathias, S. R., Guadalupe, T., Glahn, D. C., Franke, B., et al. (2018). Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA consortium. Proceedings of the National Academy of Sciences, 115(22), E5154–E5163.
  48. Kurth, F., Gaser, C., & Luders, E. (2015). A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (spm). Nature Protocols, 10(2), 293–304. [PMID: 25591011]
  49. Majeti, R., Becker, M. W., Tian, Q., Lee, T.-L. M., Yan, X., Liu, R., Chiang, J. H., Hood, L., Clarke, M. F., & Weissman, I. L. (2009). Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proceedings of the National Academy of Sciences, 106(9), 3396–3401.
  50. Mennes, M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2013). Making data sharing work: The FCP/INDI experience. NeuroImage, 82, 683–691. [PMID: 23123682]
  51. Miller, S. R., Miller, C. J., Bloom, J. S., Hynd, G. W., & Craggs, J. G. (2006). Right hemisphere brain morphology, attention-deficit hyperactivity disorder (ADHD) subtype, and social comprehension. Journal of Child Neurology, 21(2), 139–144. [PMID: 16566878]
  52. Mohamed, S. M. H., Börger, N. A., Geuze, R. H., & van der Meere, J. J. (2015). Brain lateralization and self-reported symptoms of ADHD in a population sample of adults: a dimensional approach. Frontiers in Psychology, 6.
  53. Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage, 154, 169–173. [PMID: 27888059]
  54. Nomi, J. S., Schettini, E., Voorhies, W., Bolt, T. S., Heller, A. S., & Uddin, L. Q. (2018). Resting-State Brain Signal Variability in Prefrontal Cortex Is Associated With ADHD Symptom Severity in Children. Frontiers in Human. Neuroscience, 12.
  55. O’Halloran, C. J., Kinsella, G. J., & Storey, E. (2012). The cerebellum and neuropsychological functioning: A critical review. Journal of Clinical and Experimental Neuropsychology, 34(1), 35–56. [PMID: 22047489]
  56. Okada, N., Fukunaga, M., Yamashita, F., Koshiyama, D., Yamamori, H., et al. (2016). Abnormal asymmetries in subcortical brain volume in schizophrenia. Molecular Psychiatry, 21(10), 1460–1466. [PMID: 26782053]
  57. Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The worldwide prevalence of ADHD: A systematic review and Metaregression analysis. American Journal of Psychiatry, 164(6), 942–948.
  58. Postema, M. C., Hoogman, M., , ENIGMA ADHD Working Group, Glahn, D. C., Jahanshad, N.,…DPhil, C. F. (2020). Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets. BioRxiv, doi: https://doi.org/10.1101/2020.03.03.974758 .
  59. Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage, 105, 536–551. [PMID: 25462692]
  60. Pueyo, R., Maneru, C., Vendrell, P., Mataro, M., Estevez-Gonzalez, A., Garcia-Sanchez, C., & Junque, C. (2000). Attention deficit hyperactivity disorder. Cerebral asymmetry observed on magnetic resonance. Revista de Neurologia, 30, 920–925. [PMID: 10919186]
  61. Qiu, H., Li, X., Luo, Q., Li, Y., Zhou, X., Cao, H., Zhong, Y., & Sun, M. (2019). Alterations in patients with major depressive disorder before and after electroconvulsive therapy measured by fractional amplitude of low-frequency fluctuations (fALFF). Journal of Affective Disorders, 244, 92–99. [PMID: 30326347]
  62. Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage, 122, 1–5. [PMID: 26241684]
  63. Rosch, K. S., Crocetti, D., Hirabayashi, K., Denckla, M. B., Mostofsky, S. H., & Mahone, E. M. (2018). Reduced subcortical volumes among preschool-age girls and boys with ADHD. Psychiatry Research: Neuroimaging, 271, 67–74. [PMID: 29162300]
  64. Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences, 104(50), 19663–19664.
  65. Rubia, K., Smith, A. B., Halari, R., Matsukura, F., Mohammad, M., Taylor, E., & Brammer, M. J. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and Ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. American Journal of Psychiatry, 166(1), 83–94.
  66. Salavert, J., Ramos-Quiroga, J. A., Moreno-Alcázar, A., Caseras, X., Palomar, G., Radua, J., Bosch, R., Salvador, R., McKenna, P., Casas, M., & Pomarol-Clotet, E. (2015). Functional imaging changes in the medial prefrontal cortex in adult ADHD. Journal of Attention Disorders, 22(7), 679–693. [PMID: 26515892]
  67. Sarappa, C., Salvatore, E., Filla, A., Cocozza, S., Russo, C. V., Saccà, F., et al. (2016). Functional MRI signal fluctuations highlight altered resting brain activity in Huntington’s disease. Brain Imaging and Behavior, 11(5), 1459–1469.
  68. Schrimsher, G. W., Billingsley, R. L., Jackson, E. F., & Moore, B. D. (2002). Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children. Journal of Child Neurology, 17(12), 877–884. [PMID: 12593459]
  69. Seidman, L. J., Biederman, J., Liang, L., Valera, E. M., Monuteaux, M. C., Brown, A., Kaiser, J., Spencer, T., Faraone, S. V., & Makris, N. (2011). Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based Morphometry. Biological Psychiatry, 69(9), 857–866. [PMID: 21183160]
  70. Shaw, P., Lalonde, F., Lepage, C., Rabin, C., Eckstrand, K., Sharp, W., Greenstein, D., Evans, A., Giedd, J. N., & Rapoport, J. (2009). Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 66(8), 888–896. [PMID: 19652128]
  71. Smith, D. F. (2015). Systematic review of an emerging trend in China: Resting-state functional connectivity in major depressive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 27(2), 104–111. [PMID: 25255047]
  72. Sripada, C. S., Kessler, D., & Angstadt, M. (2014). Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/hyperactivity disorder. Proceedings of the National Academy of Sciences, 111(39), 14259–14264.
  73. Stefanatos, G. A., & Wasserstein, J. (2006). Attention deficit/hyperactivity disorder as a right hemisphere syndrome. Annals of the New York Academy of Sciences, 931(1), 172–195.
  74. Sudre, G., Szekely, E., Sharp, W., Kasparek, S., & Shaw, P. (2017). Multimodal mapping of the brain’s functional connectivity and the adult outcome of attention deficit hyperactivity disorder. Proceedings of the National Academy of Sciences, 114(44), 11787–11792.
  75. The ADHD-200 Consortium. (2012). The ADHD-200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Frontiers in Systems Neuroscience, 6.
  76. Tripp, G., & Wickens, J. R. (2009). Neurobiology of ADHD. Neuropharmacology, 57(7–8), 579–589. [PMID: 19627998]
  77. Van Meel, C. S., Oosterlaan, J., Heslenfeld, D. J., & Sergeant, J. A. (2005). Motivational effects on motor timing in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44(5), 451–460.
  78. Wang, W., Hu, B., Yao, Z., Jackson, M., Liu, R., & Liang, C. (2013). Dysfunctional neural activity and connection patterns in attention deficit hyperactivity disorder: A resting state fMRI study. The 2013 international joint conference on neural networks (IJCNN).
  79. Wang, Y., Xu, Q., Li, S., Li, G., Zuo, C., Liao, S., Long, Y., Li, S., & Joshi, R. M. (2018). Gender differences in anomalous subcortical morphology for children with ADHD. Neuroscience Letters, 665, 176–181. [PMID: 29217259]
  80. Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence–fourth edition:Canadian. NCS Pearson.
  81. Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., Duggirala, R., & Glahn, D. C. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146. [PMID: 20006715]
  82. Wyciszkiewicz, A., & Pawlak, M. A. (2014). Basal ganglia volumes: MR-derived reference ranges and lateralization indices for children and young adults. The Neuroradiology Journal, 27(5), 595–612. [PMID: 25260207]
  83. Wyciszkiewicz, A., Pawlak, M. A., & Krawiec, K. (2016). Cerebellar volume in children with attention-deficit hyperactivity disorder (adhd): Replication study. Journal of Child Neurology, 32(2), 215–221. [PMID: 27888270]
  84. Yan, C., & Zang, Y. (2010). Dparsf: A matlab toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4(13), 13.
  85. Yang, H., Wu, Q., Guo, L., Li, Q., Long, X., Huang, X., et al. (2011). Abnormal spontaneous brain activity in medication-naïve ADHD children: A resting state fMRI study. Neuroscience Letters, 502(2), 89–93. [PMID: 21810451]
  86. Yoo, J. H., Kim, D., Choi, J., & Jeong, B. (2017). Treatment effect of methylphenidate on intrinsic functional brain network in medication-naïve ADHD children: A multivariate analysis. Brain Imaging and Behavior, 12(2), 518–531.
  87. Zang, Y., He, Y., Zhu, C., Cao, Q., Sui, M., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91. [PMID: 16919409]
  88. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400. [PMID: 15110032]
  89. Zou, Q., Zhu, C., Yang, Y., Zuo, X., Long, X., Cao, Q., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141. [PMID: 18501969]

MeSH Term

Attention Deficit Disorder with Hyperactivity
Brain
Child
Functional Laterality
Gray Matter
Humans
Magnetic Resonance Imaging

Word Cloud

Created with Highcharts 10.0.0ADHDasymmetrystructuralfunctionalbrainattentiondeficit/hyperactivitydisorderregionsnaturehemisphericmeta-analysisimagingdatasetseffectsregionalGMVfunctionstructureAberrationasymmetrichumanassociatedseveralmentaldisordersincludingaberrationsthoughtreflectkeydifferencesfunctioningalthoughbasesdefectsyetfullycharacterizedstudyappliedcomprehensivemultimodal627subjects303typicallydevelopingcontrol[TDCs]324patientsresting-statemagneticresonanceMRIsevenindependentpubliclyavailableADHD-200sampleperformedlateralizationanalysiscalculatedcombinedthreecorticalmeasuresgreymattervolume-fractionalamplitudelowfrequencyfluctuationsrest-fALFFhomogeneity-ReHofoundcomparedTDC68%73%66%showedstatisticallysignificantfALFFReHorespectivelyfalsediscoveryratecorrectedq = 005Forty-onepercent41%abnormalitieslocatedprefrontalfrontalsubcorticalcorticescerebellumFurthermoreindiceshigherchildrenseveresymptomsindicatingcrucialpathoplasticrolefindingshighlight1strongbasisthuslikelydevelopmental2stronglylinkedsymptomburdenIQmaycarrypossibleprognosticvaluegradingseverityAbnormaldisorder:individualparticipantdataAttentionBrainHemisphericMeta-analysis

Similar Articles

Cited By