Transdermal drug delivery systems for fighting common viral infectious diseases.

Fang-Ying Wang, Yunching Chen, Yi-You Huang, Chao-Min Cheng
Author Information
  1. Fang-Ying Wang: Department of Biomedical Engineering, College of Medicine, College of Engineering, National Taiwan University, Taipei, Taiwan. ORCID
  2. Yunching Chen: Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
  3. Yi-You Huang: Department of Biomedical Engineering, College of Medicine, College of Engineering, National Taiwan University, Taipei, Taiwan. yyhuang@ntu.edu.tw.
  4. Chao-Min Cheng: Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan. chaomin@mx.nthu.edu.tw. ORCID

Abstract

Transdermal drug delivery systems (TDDS) have many advantages and represent an excellent alternative to oral delivery and hypodermic injections. TDDS are more convenient and less invasive tools for disease and viral infection treatment, prevention, detection, and surveillance. The emerging development of microneedles for TDDS has facilitated improved skin barrier penetration for the delivery of macromolecules or hydrophilic drugs. Microneedle TDDS patches can be fabricated to deliver virus vaccines and potentially provide a viable alternative vaccine modality that offers improved immunogenicity, thermostability, simplicity, safety, and compliance as well as sharp-waste reduction, increased cost-effectiveness, and the capacity for self-administration, which could improve vaccine distribution. These advantages make TDDS-based vaccine delivery an especially well-suited option for treatment of widespread viral infectious diseases including pandemics. Because microneedle-based bioassays employ transdermal extraction of interstitial fluid or blood, they can be used as a minimally invasive approach for surveying disease markers and providing point-of-care (POC) diagnostics. For cutaneous viral infections, TDDS can provide localized treatment with high specificity and less systemic toxicity. In summary, TDDS, especially those that employ microneedles, possess special attributes that can be leveraged to reduce morbidity and mortality from viral infectious diseases. In this regard, they may have considerable positive impact as a modality for improving global health. In this article, we introduce the possible role and summarize the current literature regarding TDDS applications for fighting common cutaneous or systemic viral infectious diseases, including herpes simplex, varicella or herpes zoster, warts, influenza, measles, and COVID-19.

Keywords

References

  1. Vaccine. 2013 Jul 25;31(34):3435-41 [PMID: 23398932]
  2. Biomaterials. 2020 Feb;232:119740 [PMID: 31918227]
  3. Matter. 2020 Nov 4;3(5):1589-1600 [PMID: 33043290]
  4. Can Fam Physician. 2008 Dec;54(12):1683-7 [PMID: 19074705]
  5. J Pharm Pharmacol. 2012 Jan;64(1):11-29 [PMID: 22150668]
  6. Curr Opin Virol. 2020 Apr;41:68-76 [PMID: 32622318]
  7. Adv Drug Deliv Rev. 2004 Mar 27;56(5):619-58 [PMID: 15019750]
  8. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  9. Adv Colloid Interface Sci. 2006 Nov 16;123-126:369-85 [PMID: 16843424]
  10. Vaccine. 2006 Feb 27;24(9):1282-90 [PMID: 16225969]
  11. Adv Drug Deliv Rev. 2008 Jun 30;60(10):1218-23 [PMID: 18450318]
  12. Am J Med. 1993 Feb;94(2):212-5 [PMID: 8430717]
  13. Eur J Pharm Sci. 2018 May 16;121:200-209 [PMID: 29777854]
  14. J Pharm Pharm Sci. 1998 May-Aug;1(2):66-73 [PMID: 10945920]
  15. BMC Med. 2004 Apr 19;2:12 [PMID: 15090063]
  16. Vaccine. 2015 Sep 8;33(37):4712-8 [PMID: 25770786]
  17. J Infect Dis. 2018 Jun 5;218(1):124-132 [PMID: 29701813]
  18. J Clin Virol. 1999 Sep;14(1):31-6 [PMID: 10548128]
  19. J Am Acad Dermatol. 1989 Jan;20(1):74-6 [PMID: 2643641]
  20. Reg Anesth Pain Med. 2008 Jul-Aug;33(4):320-5 [PMID: 18675742]
  21. EBioMedicine. 2020 May;55:102743 [PMID: 32249203]
  22. Clin Microbiol Rev. 1996 Jul;9(3):361-81 [PMID: 8809466]
  23. Skin Pharmacol Physiol. 2007;20(6):272-82 [PMID: 17717423]
  24. Nat Biotechnol. 2008 Nov;26(11):1261-8 [PMID: 18997767]
  25. Drug Saf. 2003;26(13):951-73 [PMID: 14583070]
  26. Anesthesiology. 1989 Jun;70(6):928-34 [PMID: 2729633]
  27. J Invest Dermatol. 2015 Feb;135(2):425-434 [PMID: 25243789]
  28. J Control Release. 2010 Mar 3;142(2):187-95 [PMID: 19840825]
  29. PLoS One. 2015 Mar 18;10(3):e0120797 [PMID: 25785935]
  30. Lancet. 2017 Aug 12;390(10095):649-658 [PMID: 28666680]
  31. J Obstet Gynaecol Res. 2009 Aug;35(4):712-6 [PMID: 19751332]
  32. J Formos Med Assoc. 2019 Mar;118(3):657-663 [PMID: 30648551]
  33. J Virol. 2010 Aug;84(15):7760-9 [PMID: 20484519]
  34. N Engl J Med. 2004 Nov 25;351(22):2295-301 [PMID: 15525714]
  35. Drug Deliv Transl Res. 2018 Feb;8(1):273-280 [PMID: 29204924]
  36. Pharm Dev Technol. 2003;8(2):199-208 [PMID: 12760570]
  37. J Pain Palliat Care Pharmacother. 2003;17(2):5-26 [PMID: 14649386]
  38. Am J Med. 1988 Jun;84(6):1067-71 [PMID: 3376977]
  39. Travel Med Infect Dis. 2020 Jul - Aug;36:101804 [PMID: 32569810]
  40. MMWR Morb Mortal Wkly Rep. 2018 Nov 30;67(47):1323-1329 [PMID: 30496160]
  41. Clin Vaccine Immunol. 2011 Apr;18(4):647-54 [PMID: 21288996]
  42. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7968-73 [PMID: 19416832]
  43. Am J Med. 1982 Jul 20;73(1A):315-9 [PMID: 6285721]
  44. Gene Ther. 2003 Feb;10(3):251-60 [PMID: 12571633]
  45. J Infect Dis. 2004 May 1;189 Suppl 1:S4-16 [PMID: 15106083]
  46. Int J Epidemiol. 2009 Feb;38(1):192-205 [PMID: 19188207]
  47. Adv Drug Deliv Rev. 2012 Nov;64(14):1547-68 [PMID: 22575858]
  48. Biomaterials. 2015 Aug;59:30-8 [PMID: 25950985]
  49. Expert Rev Clin Immunol. 2010 Mar;6(2):291-310 [PMID: 20402391]
  50. J Infect Dis. 2011 Aug 15;204(4):582-91 [PMID: 21685355]
  51. Lancet. 2001 May 12;357(9267):1513-8 [PMID: 11377626]
  52. Pharmaceutics. 2015 Jun 29;7(3):90-105 [PMID: 26131647]
  53. Nat Rev Immunol. 2020 May;20(5):269-270 [PMID: 32273594]
  54. Dermatol Surg. 2016 Aug;42(8):1007-8 [PMID: 27227479]
  55. AAPS PharmSciTech. 2010 Sep;11(3):1193-201 [PMID: 20676947]
  56. Dermatol Surg. 2008 Oct;34(10):1299-313 [PMID: 18616538]
  57. Nat Med. 2000 Nov;6(11):1253-7 [PMID: 11062537]
  58. PLoS One. 2009 Sep 25;4(9):e7152 [PMID: 19779615]
  59. Pharm Res. 2006 Dec;23(12):2729-47 [PMID: 17109215]
  60. Vaccine. 2013 Jul 25;31(34):3403-9 [PMID: 23044406]
  61. Euro Surveill. 2014 Dec 18;19(50):20994 [PMID: 25597542]
  62. Viral Immunol. 2018 Mar;31(2):86-95 [PMID: 29256824]
  63. Biomed Pharmacother. 2019 Jan;109:1249-1258 [PMID: 30551375]
  64. Molecules. 2016 Dec 15;21(12): [PMID: 27983701]
  65. Dermatol Clin. 1998 Apr;16(2):289-99 [PMID: 9589202]
  66. Int J Pharm. 2002 Aug 28;243(1-2):1-15 [PMID: 12176291]
  67. Vaccine. 2009 Nov 16;27(49):6932-8 [PMID: 19761836]
  68. Dermatol Ther. 2020 Nov;33(6):e14179 [PMID: 32785986]
  69. N Engl J Med. 2004 Nov 25;351(22):2286-94 [PMID: 15525713]
  70. Science. 1971 Aug 27;173(3999):843-5 [PMID: 4328483]
  71. Drug Dev Ind Pharm. 2019 Feb;45(2):188-201 [PMID: 30348022]
  72. APMIS. 2003 Jul-Aug;111(7-8):725-40 [PMID: 12974775]

Grants

  1. CMRPGBL0021/Chang Gung Memorial Hospital

MeSH Term

Administration, Cutaneous
Animals
Antiviral Agents
COVID-19
Communicable Diseases
Drug Delivery Systems
Humans
Microinjections
COVID-19 Drug Treatment

Chemicals

Antiviral Agents

Word Cloud

Created with Highcharts 10.0.0TDDSdeliveryviralTransdermalcanvaccineinfectiousdiseasesdrugtreatmentsystemsadvantagesalternativelessinvasivediseaseinfectionmicroneedlesimprovedMicroneedlepatchesprovidemodalityespeciallyincludingemploycutaneoussystemicfightingcommonherpesmanyrepresentexcellentoralhypodermicinjectionsconvenienttoolspreventiondetectionsurveillanceemergingdevelopmentfacilitatedskinbarrierpenetrationmacromoleculeshydrophilicdrugsfabricateddelivervirusvaccinespotentiallyviableoffersimmunogenicitythermostabilitysimplicitysafetycompliancewellsharp-wastereductionincreasedcost-effectivenesscapacityself-administrationimprovedistributionmakeTDDS-basedwell-suitedoptionwidespreadpandemicsmicroneedle-basedbioassaystransdermalextractioninterstitialfluidbloodusedminimallyapproachsurveyingmarkersprovidingpoint-of-carePOCdiagnosticsinfectionslocalizedhighspecificitytoxicitysummarypossessspecialattributesleveragedreducemorbiditymortalityregardmayconsiderablepositiveimpactimprovingglobalhealtharticleintroducepossiblerolesummarizecurrentliteratureregardingapplicationssimplexvaricellazosterwartsinfluenzameaslesCOVID-19MicroneedlessamplingViral

Similar Articles

Cited By