Characterization of a Plant Nuclear Matrix Constituent Protein in Liverwort.

Nan Wang, Ezgi Süheyla Karaaslan, Natalie Faiss, Kenneth Wayne Berendzen, Chang Liu
Author Information
  1. Nan Wang: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  2. Ezgi Süheyla Karaaslan: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  3. Natalie Faiss: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  4. Kenneth Wayne Berendzen: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
  5. Chang Liu: Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.

Abstract

The nuclear lamina (NL) is a complex network of nuclear lamins and lamina-associated nuclear membrane proteins, which scaffold the nucleus to maintain structural integrity. In animals, type V intermediate filaments are the main constituents of NL. Plant genomes do not encode any homologs of these intermediate filaments, yet plant nuclei contain lamina-like structures that are present in their nuclei. In , CROWDED NUCLEI (CRWN), which are required for maintaining structural integrity of the nucleus and specific perinuclear chromatin anchoring, are strong candidates for plant lamin proteins. Recent studies revealed additional roles of Nuclear Matrix Constituent Proteins (NMCPs) in modulating plants' response to pathogen and abiotic stresses. However, detailed analyses of NMCP activities are challenging due to the presence of multiple homologs and their functional redundancy. In this study, we investigated the sole gene in the liverwort (). We found that MpNMCP proteins preferentially were localized to the nuclear periphery. Using CRISPR/Cas9 techniques, we generated an loss-of-function mutant, which displayed reduced growth rate and curly thallus lobes. At an organelle level, mutants did not show any alteration in nuclear morphology. Transcriptome analyses indicated that was involved in regulating biotic and abiotic stress responses. Additionally, a highly repetitive genomic region on the male sex chromosome, which was preferentially tethered at the nuclear periphery in wild-type thalli, decondensed in the MpNMCP mutants and located in the nuclear interior. This perinuclear chromatin anchoring, however, was not directly controlled by MpNMCP. Altogether, our results unveiled that in plants have conserved functions in modulating stress responses.

Keywords

References

  1. Plant Physiol. 2019 Apr;179(4):1315-1329 [PMID: 30696746]
  2. Nat Commun. 2020 Nov 20;11(1):5914 [PMID: 33219233]
  3. J Exp Bot. 2016 Oct;67(19):5699-5710 [PMID: 27630107]
  4. Genome Biol. 2011;12(5):222 [PMID: 21639948]
  5. Plant Signal Behav. 2020;15(1):1694224 [PMID: 31752584]
  6. New Phytol. 2020 Jul;227(1):65-83 [PMID: 32129897]
  7. Front Plant Sci. 2020 Jan 09;10:1639 [PMID: 31998332]
  8. Genome Biol. 2019 Apr 30;20(1):87 [PMID: 31039799]
  9. EMBO J. 2020 Mar 16;39(6):e103159 [PMID: 32080885]
  10. Science. 2016 Oct 28;354(6311):468-472 [PMID: 27492478]
  11. J Cell Sci. 1992 Oct;103 ( Pt 2):407-14 [PMID: 1478943]
  12. Annu Rev Biomed Eng. 2011 Aug 15;13:397-428 [PMID: 21756143]
  13. Mol Cytogenet. 2014 Mar 06;7(1):21 [PMID: 24602284]
  14. Plant Cell Physiol. 2016 Feb;57(2):281-90 [PMID: 25971256]
  15. J Plant Physiol. 2019 Feb;233:20-30 [PMID: 30576929]
  16. Nat Rev Genet. 2019 Jan;20(1):39-50 [PMID: 30356165]
  17. Nat Chem Biol. 2018 May;14(5):480-488 [PMID: 29632411]
  18. Chromosome Res. 2001;9(6):469-73 [PMID: 11592481]
  19. Transgenic Res. 2014 Apr;23(2):235-44 [PMID: 24036909]
  20. Curr Issues Mol Biol. 2012;14(1):27-38 [PMID: 21795760]
  21. Plant Cell. 2004;16 Suppl:S61-71 [PMID: 15084718]
  22. Protein Cell. 2020 Nov 5;: [PMID: 33155082]
  23. Nucleic Acids Res. 2012 Oct;40(18):9182-92 [PMID: 22826500]
  24. Curr Biol. 2019 Jul 22;29(14):2282-2294.e5 [PMID: 31303485]
  25. J Exp Bot. 2013 Apr;64(6):1553-64 [PMID: 23378381]
  26. J Clin Invest. 2009 Jul;119(7):1772-83 [PMID: 19587452]
  27. Curr Biol. 2020 Feb 24;30(4):573-588.e7 [PMID: 32004456]
  28. Plant Cell Physiol. 2008 Jul;49(7):1084-91 [PMID: 18535011]
  29. Mol Cell. 2018 Sep 6;71(5):802-815.e7 [PMID: 30201095]
  30. Plant Biotechnol (Tokyo). 2018 Sep 25;35(3):281-284 [PMID: 31819734]
  31. Front Plant Sci. 2021 Feb 17;12:645218 [PMID: 33679862]
  32. Biosci Biotechnol Biochem. 2013;77(1):167-72 [PMID: 23291762]
  33. Curr Opin Cell Biol. 2016 Jun;40:114-123 [PMID: 27030912]
  34. J Cell Mol Med. 2009 Jun;13(6):1059-85 [PMID: 19210577]
  35. Nucleus. 2017 Jan 2;8(1):46-59 [PMID: 27644504]
  36. Plant Cell. 2007 Sep;19(9):2793-803 [PMID: 17873096]
  37. N Biotechnol. 2016 Sep 25;33(5 Pt B):604-613 [PMID: 26581489]
  38. Plant J. 2000 Nov;24(3):421-8 [PMID: 11069714]
  39. Mol Plant. 2019 Feb 4;12(2):185-198 [PMID: 30594656]
  40. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6472-7 [PMID: 17395720]
  41. Nat Plants. 2020 Oct;6(10):1250-1261 [PMID: 32895530]
  42. J Integr Plant Biol. 2016 Jul;58(7):669-78 [PMID: 26564029]
  43. J Cell Sci. 1993 Sep;106 ( Pt 1):431-9 [PMID: 8270641]
  44. Plant Cell Physiol. 2013 Apr;54(4):622-33 [PMID: 23396599]
  45. Mol Plant. 2017 Oct 9;10(10):1334-1348 [PMID: 28943325]
  46. Plant Cell Physiol. 2014 Mar;55(3):475-81 [PMID: 24443494]
  47. Nature. 2015 Jul 9;523(7559):240-4 [PMID: 26030525]
  48. Plant Cell Physiol. 2020 Feb 1;61(2):442 [PMID: 31778192]
  49. Plant Cell. 2014 May 13;26(5):2143-2155 [PMID: 24824484]
  50. Nat Commun. 2019 Mar 12;10(1):1176 [PMID: 30862957]
  51. J Exp Bot. 2019 May 9;70(10):2651-2664 [PMID: 30828723]
  52. J Exp Bot. 2015 Mar;66(6):1641-7 [PMID: 25711706]
  53. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9454-9 [PMID: 11481501]
  54. Cell. 2017 May 18;169(5):780-791 [PMID: 28525751]
  55. J Cell Sci. 2017 Feb 1;130(3):590-601 [PMID: 28049722]
  56. J Exp Bot. 2017 Mar 1;68(6):1349-1359 [PMID: 28158849]
  57. Plant Cell. 2019 May;31(5):1141-1154 [PMID: 30914470]
  58. BMC Plant Biol. 2013 Dec 05;13:200 [PMID: 24308514]
  59. PLoS One. 2015 Sep 25;10(9):e0138876 [PMID: 26406247]
  60. Exp Cell Res. 1997 Apr 10;232(1):173-81 [PMID: 9141634]
  61. Genome Res. 2017 Jul;27(7):1162-1173 [PMID: 28385710]
  62. Genes Dev. 2008 Apr 1;22(7):832-53 [PMID: 18381888]
  63. Plants (Basel). 2020 Nov 03;9(11): [PMID: 33153046]

Word Cloud

Created with Highcharts 10.0.0nuclearproteinsMpNMCPperipherylaminaNLnucleusstructuralintegrityintermediatefilamentsPlanthomologsplantnucleiperinuclearchromatinanchoringNuclearMatrixConstituentmodulatingabioticanalysesNMCPpreferentiallymutantsstressresponsescomplexnetworklaminslamina-associatedmembranescaffoldmaintainanimalstypeVmainconstituentsgenomesencodeyetcontainlamina-likestructurespresentCROWDEDNUCLEICRWNrequiredmaintainingspecificstrongcandidateslaminRecentstudiesrevealedadditionalrolesProteinsNMCPsplants'responsepathogenstressesHoweverdetailedactivitieschallengingduepresencemultiplefunctionalredundancystudyinvestigatedsolegeneliverwortfoundlocalizedUsingCRISPR/Cas9techniquesgeneratedloss-of-functionmutantdisplayedreducedgrowthratecurlythalluslobesorganellelevelshowalterationmorphologyTranscriptomeindicatedinvolvedregulatingbioticAdditionallyhighlyrepetitivegenomicregionmalesexchromosometetheredwild-typethallidecondensedlocatedinteriorhoweverdirectlycontrolledAltogetherresultsunveiledplantsconservedfunctionsCharacterizationProteinLiverwortMarchantiaenvelope

Similar Articles

Cited By