Dual Systems for Enhancing Control of Protein Activity through Induced Dimerization Approaches.

Sarah Pearce, Chandra L Tucker
Author Information
  1. Sarah Pearce: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
  2. Chandra L Tucker: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA. ORCID

Abstract

To reveal the underpinnings of complex biological systems, a variety of approaches have been developed that allow switchable control of protein function. One powerful approach for switchable control is the use of inducible dimerization systems, which can be configured to control activity of a target protein upon induced dimerization triggered by chemicals or light. Individually, many inducible dimerization systems suffer from pre-defined dynamic ranges and overwhelming sensitivity to expression level and cellular context. Such systems often require extensive engineering efforts to overcome issues of background leakiness and restricted dynamic range. To address these limitations, recent tool development efforts have explored overlaying dimerizer systems with a second layer of regulation. Albeit more complex, the resulting layered systems have enhanced functionality, such as tighter control that can improve portability of these tools across platforms.

Keywords

References

  1. ACS Synth Biol. 2018 Sep 21;7(9):2216-2225 [PMID: 30125482]
  2. Chem Biol. 2006 Jan;13(1):99-107 [PMID: 16426976]
  3. ACS Synth Biol. 2014 Nov 21;3(11):796-801 [PMID: 25343333]
  4. Nat Methods. 2016 Dec;13(12):1043-1049 [PMID: 27776111]
  5. Science. 1995 Jun 23;268(5218):1766-9 [PMID: 7792603]
  6. ACS Chem Biol. 2014 Jan 17;9(1):111-5 [PMID: 24180414]
  7. Nucleic Acids Res. 2017 Nov 16;45(20):e167 [PMID: 28431041]
  8. Sci Signal. 2011 Mar 15;4(164):rs2 [PMID: 21406691]
  9. Sci Rep. 2018 Oct 9;8(1):15024 [PMID: 30301909]
  10. Angew Chem Int Ed Engl. 2013 Jun 17;52(25):6450-4 [PMID: 23649661]
  11. Nat Commun. 2018 Oct 2;9(1):4042 [PMID: 30279442]
  12. Nature. 2009 Oct 15;461(7266):997-1001 [PMID: 19749742]
  13. J Am Chem Soc. 2011 Jan 12;133(1):12-4 [PMID: 21142151]
  14. Nat Chem Biol. 2014 Mar;10(3):196-202 [PMID: 24413462]
  15. Angew Chem Int Ed Engl. 2014 Jun 23;53(26):6720-3 [PMID: 24841150]
  16. Nat Methods. 2014 Jun;11(6):633-6 [PMID: 24793453]
  17. Science. 2016 Dec 16;354(6318):1441-1444 [PMID: 27980211]
  18. Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6796-6799 [PMID: 29637703]
  19. Chem Biol. 2010 Sep 24;17(9):981-8 [PMID: 20851347]
  20. ACS Synth Biol. 2015 Oct 16;4(10):1124-35 [PMID: 25985220]
  21. Angew Chem Int Ed Engl. 2017 May 15;56(21):5916-5920 [PMID: 28370940]
  22. ACS Chem Biol. 2020 Aug 21;15(8):2212-2220 [PMID: 32623878]
  23. Nat Methods. 2016 Jul;13(7):591-7 [PMID: 27159085]
  24. Chembiochem. 2018 Jun 18;19(12):1319-1325 [PMID: 29446199]
  25. Nature. 1996 Aug 29;382(6594):822-6 [PMID: 8752278]
  26. Curr Opin Struct Biol. 2019 Aug;57:1-8 [PMID: 30818200]
  27. Cell. 2011 Dec 23;147(7):1564-75 [PMID: 22196731]
  28. Nucleic Acids Res. 2019 Sep 26;47(17):e97 [PMID: 31287871]
  29. Science. 1993 Nov 12;262(5136):1019-24 [PMID: 7694365]
  30. Nat Methods. 2013 Mar;10(3):249-52 [PMID: 23377377]
  31. Nat Commun. 2016 Jul 01;7:12009 [PMID: 27363581]
  32. Mol Cell. 2020 Apr 2;78(1):184-191.e3 [PMID: 32027839]
  33. Nat Biotechnol. 2019 Oct;37(10):1209-1216 [PMID: 31501561]
  34. Science. 2008 Oct 17;322(5900):438-42 [PMID: 18927392]
  35. Nat Commun. 2013;4:1779 [PMID: 23653191]
  36. Nat Cell Biol. 2020 Mar;22(3):341-352 [PMID: 32066905]
  37. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10049-55 [PMID: 25065762]
  38. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):112-7 [PMID: 25535392]
  39. Trends Cell Biol. 1993 Aug;3(8):278-80 [PMID: 14731747]
  40. Cell. 2006 Sep 8;126(5):995-1004 [PMID: 16959577]
  41. Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4717-20 [PMID: 24677313]
  42. Biotechnol Adv. 1995;13(2):247-61 [PMID: 14537822]
  43. Science. 2018 Mar 9;359(6380): [PMID: 29590011]
  44. Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11993-11997 [PMID: 30048030]
  45. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547-51 [PMID: 1319065]
  46. Nucleic Acids Res. 2016 Apr 7;44(6):2677-90 [PMID: 26673714]
  47. Nat Methods. 2012 Mar 04;9(4):379-84 [PMID: 22388287]
  48. Chemistry. 2019 Sep 25;25(54):12452-12463 [PMID: 31304989]
  49. Dev Cell. 2010 Feb 16;18(2):324-31 [PMID: 20159602]
  50. ACS Synth Biol. 2019 Oct 18;8(10):2359-2371 [PMID: 31592660]
  51. Nat Methods. 2018 Jul;15(7):523-526 [PMID: 29967496]
  52. ACS Synth Biol. 2014 Sep 19;3(9):676-85 [PMID: 25000210]
  53. ACS Synth Biol. 2019 May 17;8(5):1026-1036 [PMID: 30955324]
  54. Nat Methods. 2010 Dec;7(12):973-5 [PMID: 21037589]
  55. Neuron. 2019 Mar 6;101(5):863-875.e6 [PMID: 30704911]
  56. Nat Protoc. 2018 May;13(5):1121-1136 [PMID: 29700485]
  57. Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7744-9 [PMID: 18511556]
  58. Nat Chem Biol. 2012 Mar 25;8(5):465-70 [PMID: 22446836]
  59. Nat Commun. 2020 Jun 18;11(1):3085 [PMID: 32555187]
  60. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4604-7 [PMID: 8643450]
  61. Nat Biotechnol. 2017 Sep;35(9):864-871 [PMID: 28650461]
  62. Cell Syst. 2020 Oct 21;11(4):336-353.e24 [PMID: 32898473]
  63. Nat Methods. 2017 May;14(5):495-503 [PMID: 28369042]
  64. Nucleic Acids Res. 2013 Jul;41(12):e124 [PMID: 23625964]
  65. Cell. 2000 Jun 23;101(7):717-28 [PMID: 10892743]
  66. Nat Methods. 2017 Apr;14(4):391-394 [PMID: 28288123]
  67. Science. 2018 Sep 21;361(6408):1252-1258 [PMID: 30237357]
  68. Nat Commun. 2014 Nov 17;5:5475 [PMID: 25400104]
  69. J Cell Biol. 2013 May 13;201(4):631-40 [PMID: 23671313]
  70. Nat Methods. 2016 Sep;13(9):755-8 [PMID: 27427858]
  71. Nat Cell Biol. 2019 Jun;21(6):768-777 [PMID: 31061466]
  72. Nat Commun. 2015 Feb 24;6:6256 [PMID: 25708714]

Grants

  1. R35 GM136367/NIGMS NIH HHS
  2. UF1 NS107710/NINDS NIH HHS
  3. R01 GM100225/NIGMS NIH HHS

MeSH Term

Dimerization
Proteins

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0systemscontroldimerizationproteincomplexswitchableinduciblecaninduceddynamiceffortsdimerizerrevealunderpinningsbiologicalvarietyapproachesdevelopedallowfunctionOnepowerfulapproachuseconfiguredactivitytargetupontriggeredchemicalslightIndividuallymanysufferpre-definedrangesoverwhelmingsensitivityexpressionlevelcellularcontextoftenrequireextensiveengineeringovercomeissuesbackgroundleakinessrestrictedrangeaddresslimitationsrecenttooldevelopmentexploredoverlayingsecondlayerregulationAlbeitresultinglayeredenhancedfunctionalitytighterimproveportabilitytoolsacrossplatformsDualSystemsEnhancingControlProteinActivityInducedDimerizationApproacheschemicalinducersoptogenetic

Similar Articles

Cited By