A latent variable approach to account for correlated inputs in global sensitivity analysis.

Nicola Melillo, Adam S Darwich
Author Information
  1. Nicola Melillo: Centre for Applied Pharmacokinetic Research, Division of Pharmacy & Optometry, School of Health Sciences, The University of Manchester, Manchester, UK.
  2. Adam S Darwich: Division of Health Informatics and Logistics, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden. darwich@kth.se. ORCID

Abstract

In drug development decision-making is often supported through model-based methods, such as physiologically-based pharmacokinetics (PBPK). Global sensitivity analysis (GSA) is gaining use for quality assessment of model-informed inference. However, the inclusion and interpretation of correlated factors in GSA has proven an issue. Here we developed and evaluated a latent variable approach for dealing with correlated factors in GSA. An approach was developed that describes the correlation between two model inputs through the causal relationship of three independent factors: the latent variable and the unique variances of the two correlated parameters. The latent variable approach was applied to a set of algebraic models and a case from PBPK. Then, this method was compared to Sobol's GSA assuming no correlations, Sobol's GSA with groups and the Kucherenko approach. For the latent variable approach, GSA was performed with Sobol's method. By using the latent variable approach, it is possible to devise a unique and easy interpretation of the sensitivity indices while maintaining the correlation between the factors. Compared methods either consider the parameters independent, group the dependent variables into one unique factor or present difficulties in the interpretation of the sensitivity indices. In situations where GSA is called upon to support model-informed decision-making, the latent variable approach offers a practical method, in terms of ease of implementation and interpretability, for applying GSA to models with correlated inputs that does not violate the independence assumption. Prerequisites and limitations of the approach are discussed.

Keywords

References

  1. Xenobiotica. 2011 Aug;41(8):623-38 [PMID: 21434772]
  2. Theor Biol Med Model. 2007 Mar 26;4:13 [PMID: 17386084]
  3. J Pharmacokinet Pharmacodyn. 2019 Feb;46(1):27-42 [PMID: 30552544]
  4. J Pharmacokinet Pharmacodyn. 2019 Apr;46(2):137-154 [PMID: 30905037]
  5. Br J Clin Pharmacol. 2018 May;84(5):972-986 [PMID: 29381228]
  6. J Pharm Sci. 2010 Jan;99(1):475-85 [PMID: 19492340]
  7. Eur J Pharm Sci. 2014 Jun 16;57:300-21 [PMID: 24060672]
  8. J Pharmacokinet Pharmacodyn. 2015 Aug;42(4):349-73 [PMID: 26006250]
  9. AAPS J. 2020 Feb 3;22(2):41 [PMID: 32016678]
  10. Regul Toxicol Pharmacol. 2013 Jun;66(1):116-29 [PMID: 23535119]
  11. J Clin Pharmacol. 2020 Oct;60 Suppl 1:S160-S178 [PMID: 33205429]
  12. J Endocrinol Invest. 2006 Jul-Aug;29(7):581-93 [PMID: 16957405]
  13. J Phys Chem A. 2010 May 20;114(19):6022-32 [PMID: 20420436]
  14. CPT Pharmacometrics Syst Pharmacol. 2016 Mar;5(3):93-122 [PMID: 27069774]
  15. CPT Pharmacometrics Syst Pharmacol. 2015 Feb;4(2):69-79 [PMID: 27548289]
  16. Curr Pharmacol Rep. 2016;2:161-169 [PMID: 27226953]
  17. AAPS J. 2020 Jul 17;22(5):93 [PMID: 32681207]
  18. Clin Pharmacol Ther. 2018 Dec;104(6):1219-1228 [PMID: 29574693]
  19. Curr Drug Metab. 2017;18(12):1095-1105 [PMID: 28558634]
  20. CPT Pharmacometrics Syst Pharmacol. 2021 May;10(5):420-427 [PMID: 33793084]
  21. Nat Rev Drug Discov. 2007 Feb;6(2):140-8 [PMID: 17268485]
  22. Clin Transl Sci. 2020 May;13(3):608-617 [PMID: 32043298]
  23. AAPS J. 2020 Aug 30;22(5):116 [PMID: 32862303]
  24. Clin Pharmacol Ther. 2018 Feb;103(2):224-232 [PMID: 29023678]
  25. Drug Metab Dispos. 2005 Jul;33(7):884-7 [PMID: 15833928]
  26. Drug Metab Dispos. 2004 Dec;32(12):1411-20 [PMID: 15342470]
  27. Drug Metab Dispos. 2014 Apr;42(4):500-10 [PMID: 24408517]
  28. Biopharm Drug Dispos. 2021 Apr;42(4):107-117 [PMID: 33325034]
  29. Front Pharmacol. 2011 Jun 23;2:31 [PMID: 21772819]
  30. Mol Pharm. 2018 Mar 5;15(3):831-839 [PMID: 29337562]

MeSH Term

Drug Development
Models, Biological
Pharmaceutical Preparations
Sensitivity and Specificity

Chemicals

Pharmaceutical Preparations

Word Cloud

Created with Highcharts 10.0.0approachGSAvariablelatentsensitivitycorrelatedfactorsanalysisinterpretationinputsuniquemodelsmethodSobol'sdrugdevelopmentdecision-makingmethodsPBPKGlobalmodel-informeddevelopedcorrelationtwoindependentparametersindicesoftensupportedmodel-basedphysiologically-basedpharmacokineticsgainingusequalityassessmentinferenceHoweverinclusionprovenissueevaluateddealingdescribesmodelcausalrelationshipthreefactors:variancesappliedsetalgebraiccasecomparedassumingcorrelationsgroupsKucherenkoperformedusingpossibledeviseeasymaintainingComparedeitherconsidergroupdependentvariablesonefactorpresentdifficultiessituationscalleduponsupportofferspracticaltermseaseimplementationinterpretabilityapplyingviolateindependenceassumptionPrerequisiteslimitationsdiscussedaccountglobalCorrelatedLatentModel-informeddiscoveryPhysiologicallybasedpharmacokinetic

Similar Articles

Cited By