Graphic complexity in writing systems.

Helena Miton, Olivier Morin
Author Information
  1. Helena Miton: Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA; Minds and Traditions Research Group, Max Planck Institute for the Science of Human History, Jena, Germany. Electronic address: helena.miton@gmail.com.
  2. Olivier Morin: Institut Jean Nicod, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, UMR 8129, France; Minds and Traditions Research Group, Max Planck Institute for the Science of Human History, Jena, Germany.

Abstract

A writing system is a graphic code, i.e., a system of standardized pairings between symbols and meanings in which symbols take the form of images that can endure. The visual character of writing implies that written characters have to fit constraints of the human visual system. One aspect of this optimization lays in the graphic complexity of the characters used by scripts. Scripts are sets of graphic characters used for the written form of one language or more. Using computational methods over a large and diverse dataset (over 47,000 characters, from over 133 scripts), we answer three central questions about the visual complexity of written characters and the evolution of writing: (1) What determines character complexity? (2) Can we find traces of evolutionary change in character complexity? (3) Is complexity distributed in a way that makes character recognition easier? Our study suggests that (1) character complexity depends primarily on which linguistic unit the characters encode, and that (2) there is little evidence of evolutionary change in character complexity. Additionally (3) for an individual character, the half which is encountered first while reading tends to be more complex than that which is encountered last.

Keywords

References

  1. Psychol Sci. 2004 Feb;15(2):106-11 [PMID: 14738517]
  2. Top Cogn Sci. 2020 Apr;12(2):727-743 [PMID: 30306732]
  3. Q J Exp Psychol (Hove). 2007 Sep;60(9):1265-74 [PMID: 17676557]
  4. Cogn Sci. 2007 Nov 12;31(6):961-87 [PMID: 21635324]
  5. Writ Lang Lit. 2011;14(1):39-57 [PMID: 21892341]
  6. Vision Res. 2012 Aug 1;66:31-8 [PMID: 22750543]
  7. Psychol Bull. 1956 Nov;53(6):452-71 [PMID: 13370691]
  8. Cogn Sci. 2015 Jan;39(1):171-83 [PMID: 25039798]
  9. Acta Psychol (Amst). 2012 Jan;139(1):19-37 [PMID: 22036587]
  10. Child Dev. 2003 Jan-Feb;74(1):27-47 [PMID: 12625434]
  11. Neuropsychologia. 2010 Aug;48(10):2852-60 [PMID: 20546763]
  12. Proc Biol Sci. 2005 Feb 7;272(1560):267-75 [PMID: 15705551]
  13. Cortex. 2018 Jun;103:302-315 [PMID: 29684750]
  14. Neuropsychology. 2012 Sep;26(5):551-67 [PMID: 22731609]
  15. J Vis. 2014 Nov 10;14(6): [PMID: 25384390]
  16. J Vis. 2011 Jul 05;11(8): [PMID: 21730225]
  17. Cogn Sci. 2018 Mar;42(2):664-677 [PMID: 29023934]
  18. Psychol Bull. 2006 Jan;132(1):73-97 [PMID: 16435958]
  19. Cogn Psychol. 2010 Aug;61(1):23-62 [PMID: 20434141]
  20. Am Nat. 2006 May;167(5):E117-39 [PMID: 16671005]
  21. J Exp Child Psychol. 2018 Jun;170:207-214 [PMID: 29472110]
  22. J Exp Child Psychol. 2019 Jun;182:18-37 [PMID: 30782560]
  23. Psychol Sci. 2014 Sep;25(9):1757-67 [PMID: 25085866]
  24. Percept Psychophys. 1981 Nov;30(5):483-91 [PMID: 7329766]
  25. Vision Res. 2006 Dec;46(28):4646-74 [PMID: 16808957]
  26. Nat Hum Behav. 2017 Sep;1(9):657-664 [PMID: 31024135]
  27. PLoS One. 2019 Aug 7;14(8):e0220793 [PMID: 31390374]
  28. J Exp Child Psychol. 2013 Jun;115(2):356-70 [PMID: 23584491]
  29. J Gen Psychol. 2019 Jan-Mar;146(1):34-49 [PMID: 30632925]
  30. Behav Res Methods. 2018 Feb;50(1):427-449 [PMID: 28425059]
  31. Nature. 1977 Oct 20;269(5630):705-7 [PMID: 593332]
  32. Psychol Sci. 2015 Dec;26(12):1887-97 [PMID: 26525074]
  33. Cortex. 2011 Jun;47(6):759-62 [PMID: 21377665]
  34. Q J Exp Psychol (Hove). 2017 Aug;70(8):1559-1574 [PMID: 27223256]
  35. PLoS One. 2018 Apr 2;13(4):e0194405 [PMID: 29608570]
  36. Science. 2015 Dec 11;350(6266):1332-8 [PMID: 26659050]
  37. Neuron. 2007 Oct 25;56(2):384-98 [PMID: 17964253]
  38. Invest Ophthalmol Vis Sci. 2007 May;48(5):2383-90 [PMID: 17460306]
  39. Psychol Sci. 2009 Apr;20(4):455-63 [PMID: 19399974]

MeSH Term

Humans
Language
Pattern Recognition, Visual
Reading
Writing

Word Cloud

Created with Highcharts 10.0.0complexitycharactercharacterswritingsystemgraphicvisualwrittensymbolsformusedscriptsevolution1complexity?2evolutionarychange3encounteredGraphicsystemscodeiestandardizedpairingsmeaningstakeimagescanendureimpliesfitconstraintshumanOneaspectoptimizationlaysScriptssetsonelanguageUsingcomputationalmethodslargediversedataset47000133answerthreecentralquestionswriting:determinesCanfindtracesdistributedwaymakesrecognitioneasier?studysuggestsdependsprimarilylinguisticunitencodelittleevidenceAdditionallyindividualhalffirstreadingtendscomplexlastCulturalLateralityLettersVisualWriting

Similar Articles

Cited By (9)