Hyoscyamus albus nortropane alkaloids reduce hyperglycemia and hyperinsulinemia induced in HepG2 cells through the regulation of SIRT1/NF-kB/JNK pathway.

Anna Kowalczuk, Nabila Bourebaba, Katarzyna Kornicka-Garbowska, Eliza Turlej, Krzysztof Marycz, Lynda Bourebaba
Author Information
  1. Anna Kowalczuk: National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
  2. Nabila Bourebaba: International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland.
  3. Katarzyna Kornicka-Garbowska: International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland.
  4. Eliza Turlej: Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
  5. Krzysztof Marycz: International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland.
  6. Lynda Bourebaba: International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland. lynda.bourebaba@upwr.edu.pl. ORCID

Abstract

BACKGROUND: Chronic superphysiological glucose and insulin concentrations are known to trigger several tissue and organ failures, including insulin resistance, oxidative stress and chronic low-grade inflammation. Hence, the screening for molecules that may counteract such conditions is essential in current existing therapeutic strategies, thereby the use of medicinal plant derivatives represents a promising axis in this regard.
METHODS: In this study, the effect of a selected traditional medicinal plant, Hyoscyamus albus from which, calystegines have been isolated, was investigated in an experimental model of hyperinsulinemia and hyperglycemia induced on HepG2 cells. The mRNA and protein expression levels of different insulin signaling, gluconeogenic and inflammatory pathway- related molecules were examined. Additionally, cell viability and apoptosis, oxidative stress extent and mitochondrial dysfunctions were assayed using flow cytometric and qRT-PCR techniques.
RESULTS: Treatment of IR HepG2 cells with calystegines strongly protected the injured cells from apoptosis, oxidative stress and mitochondrial integrity loss. Interestingly, nortropane alkaloids efficiently regulated the impaired glucose metabolism in IR HepG2 cells, through the stimulation of glucose uptake and the modulation of SIRT1/Foxo1/G6PC/mTOR pathway, which is governing the hepatic gluconeogenesis. Furthermore, the alkaloidal extract restored the defective insulin signaling pathway, mainly by promoting the expression of Insr at the mRNA and protein levels. What is more, treated cells exhibited significant mitigated inflammatory response, as evidenced by the modulation and the regulation of the NF- κB/JNK/TLR4 axis and the downstream proinflammatory cytokines recruitment.
CONCLUSION: Overall, the present investigation demonstrates that calystegines from Hyoscyamus albus provide cytoprotection to the HepG2 cells against insulin/glucose induced insulin resistance and apoptosis due to the regulation of SIRT1/Foxo1/G6PC/mTOR and NF-κB/JNK/TLR4 signaling pathways. Video Abstract.

Keywords

References

  1. Vaidyula VR, Rao AK, Mozzoli M, Homko C, Cheung P, Boden G. Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes. 2006;55(1):202–8. [DOI: 10.2337/diabetes.55.01.06.db05-1026]
  2. Xu H, Li X, Adams H, Kubena K, Guo S. Etiology of Metabolic Syndrome and Dietary Intervention. Int J Mol Sci. 2018;20(1):128. https://doi.org/10.3390/ijms20010128 . [DOI: 10.3390/ijms20010128]
  3. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81. [DOI: 10.1172/JCI10842]
  4. Mishra S, Yadav D, Gupta M, Mishra H, Sharma P. Hyperinsulinemia predisposes to NAFLD. Indian J Clin Biochem. 2008;23(2):130–5. [DOI: 10.1007/s12291-008-0030-6]
  5. Verdelho Machado M, Cortez-Pinto H. Fatty liver in lean patients: is it a different disease? Ann Gastroenterol. 2012;25(1):1–2.
  6. Marchisello S, Di Pino A, Scicali R, Urbano F, Piro S, Purrello F, et al. Pathophysiological, molecular and therapeutic issues of nonalcoholic fatty liver disease: an overview. Int J Mol Sci. 2019;20(8):1948. https://doi.org/10.3390/ijms20081948 . [DOI: 10.3390/ijms20081948]
  7. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002;110(6):851–60. [DOI: 10.1172/JCI200215318]
  8. Nguyen MTA, Favelyukis S, Nguyen A-K, Reichart D, Scott PA, Jenn A, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 2007;282(48):35279–92. [DOI: 10.1074/jbc.M706762200]
  9. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46. [DOI: 10.1146/annurev-physiol-021909-135846]
  10. Lauterbach MAR, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch. 2017;469(3):385–96. [DOI: 10.1007/s00424-017-1955-5]
  11. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505. [DOI: 10.1172/JCI26498]
  12. Abe T, Hirasaka K, Nikawa T. Involvement of Cbl-b-mediated macrophage inactivation in insulin resistance. World J Diabetes. 2017;8(3):97–103. [DOI: 10.4239/wjd.v8.i3.97]
  13. Abe T, Hirasaka K, Kagawa S, Kohno S, Ochi A, Utsunomiya K, et al. Cbl-b Is a critical regulator of macrophage activation associated with obesity-induced insulin resistance in mice. Diabetes. 2013;62(6):1957–69. [DOI: 10.2337/db12-0677]
  14. Oguiza A, Recio C, Lazaro I, Mallavia B, Blanco J, Egido J, et al. Peptide-based inhibition of IκB kinase/nuclear factor-κB pathway protects against diabetes-associated nephropathy and atherosclerosis in a mouse model of type 1 diabetes. Diabetologia. 2015;58(7):1656–67. [DOI: 10.1007/s00125-015-3596-6]
  15. Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol. 2015. https://doi.org/10.1155/2015/508409 . [DOI: 10.1155/2015/508409]
  16. Czaja MJ. JNK regulation of hepatic manifestations of the metabolic syndrome. Trends Endocrinol Metab. 2010;21(12):707–13. [DOI: 10.1016/j.tem.2010.08.010]
  17. Sabio G, Cavanagh-Kyros J, Ko HJ, Jung DY, Gray S, Jun JY, et al. Prevention of steatosis by hepatic JNK1. Cell Metab. 2009;10(6):491–8. [DOI: 10.1016/j.cmet.2009.09.007]
  18. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;1:1. https://doi.org/10.1155/2018/9547613 . [DOI: 10.1155/2018/9547613]
  19. Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biol Med. 2020;152:116–41. [DOI: 10.1016/j.freeradbiomed.2020.02.025]
  20. Martin SD, McGee SL. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochimica et Biophysica Acta BBA Gen Subj. 2014;1840(4):1303–12. [DOI: 10.1016/j.bbagen.2013.09.019]
  21. Liu H-Y, Yehuda-Shnaidman E, Hong T, Han J, Pi J, Liu Z, et al. Prolonged exposure to insulin suppresses mitochondrial production in primary hepatocytes. J Biol Chem. 2009;284(21):14087–95. [DOI: 10.1074/jbc.M807992200]
  22. Cao M-M, Lu X, Liu G-D, Su Y, Li Y-B, Zhou J. Resveratrol attenuates type 2 diabetes mellitus by mediating mitochondrial biogenesis and lipid metabolism via Sirtuin type 1. Exp Ther Med. 2018;15(1):576–84.
  23. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–50. [DOI: 10.1016/j.diabres.2014.04.006]
  24. Ashraf M, Ahmad M, Ahmad H, Ahmad S. Phytochemical investigation of Hyoscyamus albus. Pak J Pharm Sci. 2019;32(2):661–7.
  25. Bourebaba L, Saci S, Touguit D, Gali L, Terkmane S, Oukil N, et al. Evaluation of antidiabetic effect of total calystegines extracted from Hyoscyamus albus. Biomed Pharmacother. 2016;82:337–44. [DOI: 10.1016/j.biopha.2016.05.011]
  26. Bourebaba L, Bedjou F, Röcken M, Marycz K. Nortropane alkaloids as pharmacological chaperones in the rescue of equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome through mitochondrial potentiation, endoplasmic reticulum stress mitigation and insulin resistance alleviation. Stem Cell Res Ther. 2019;10(1):178. [DOI: 10.1186/s13287-019-1292-z]
  27. Bourebaba L, Sullini G, Mendiola JA, Bourebaba Y, Deghima A, Oukil N, et al. In-vivo edema inhibition of Hyoscyamus albus antioxidant extracts rich in calystegines. Ind Crops Prod. 2016;89:316–22. [DOI: 10.1016/j.indcrop.2016.04.067]
  28. Mohammadpour Z, Amiri F, Saboor-Yaraghi AA, Koohdani F, Norouzzadeh M, Sharifi L, et al. Resveratrol suppresses hyperglycemia-induced activation of NF-κB and AP-1 via c-Jun and RelA gene regulation. Med J Islam Republic Iran. 2018;32(1):51–6. [DOI: 10.14196/mjiri.32.10]
  29. Quintanilla RA, Jin YN, von Bernhardi R, Johnson GV. Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol Neurodegeneration. 2013;8(1):45. [DOI: 10.1186/1750-1326-8-45]
  30. Shokeen P, Anand P, Murali YK, Tandon V. Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem Toxicol. 2008;46(11):3458–66. [DOI: 10.1016/j.fct.2008.08.020]
  31. Nawrocka D, Kornicka K, Szydlarska J, Marycz K. Basic fibroblast growth factor inhibits apoptosis and promotes proliferation of adipose-derived mesenchymal stromal cells isolated from patients with type 2 diabetes by reducing cellular oxidative stress. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/3027109 . [DOI: 10.1155/2017/3027109]
  32. Nawrocka D, Kornicka K, Śmieszek A, Marycz K. Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in adipose-derived mesenchymal stromal cells (ASCs) and intestinal epithelial cells (IECs), and enhances insulin sensitivity in equine metabolic syndrome (EMS) horses. Mar Drugs. 2017. https://doi.org/10.3390/md15080237 . [DOI: 10.3390/md15080237]
  33. Marycz K, Kornicka K, Basinska K, Czyrek A. Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: new insight into EqASCs isolated from EMS horses in the context of their aging. Oxid Med Cell Longev. 2016;2016:1–17.
  34. Bucris E, Beck A, Boura-Halfon S, Isaac R, Vinik Y, Rosenzweig T, et al. Prolonged insulin treatment sensitizes apoptosis pathways in pancreatic β cells. J Endocrinol. 2016;230(3):291–307. [DOI: 10.1530/JOE-15-0505]
  35. Machado MV, Michelotti GA, Jewell ML, Pereira TA, Xie G, Premont RT, et al. Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis. 2016;7(2):e2096–e2096. [DOI: 10.1038/cddis.2016.19]
  36. Thapaliya S, Wree A, Povero D, Inzaugarat ME, Berk M, Dixon L, et al. Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Dig Dis Sci. 2014;59(6):1197–206. [DOI: 10.1007/s10620-014-3167-6]
  37. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944–8. [DOI: 10.1038/nature04634]
  38. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171–6. [DOI: 10.1172/JCI10583]
  39. Carvalho E, Rondinone C, Smith U. Insulin resistance in fat cells from obese Zucker rats–evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4. Mol Cell Biochem. 2000;206(1–2):7–16. [DOI: 10.1023/A]
  40. Abdul-Wahed A, Gautier-Stein A, Casteras S, Soty M, Roussel D, Romestaing C, et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metabol. 2014;3(5):531–43. [DOI: 10.1016/j.molmet.2014.05.005]
  41. Valenti L, Rametta R, Dongiovanni P, Maggioni M, Fracanzani AL, Zappa M, et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes. 2008;57(5):1355–62. [DOI: 10.2337/db07-0714]
  42. Collino M, Benetti E, Rogazzo M, Chiazza F, Mastrocola R, Nigro D, et al. A non-erythropoietic peptide derivative of erythropoietin decreases susceptibility to diet-induced insulin resistance in mice. Br J Pharmacol. 2014;171(24):5802–15. [DOI: 10.1111/bph.12888]
  43. Song R, Xu W, Chen Y, Li Z, Zeng Y, Fu Y. The expression of Sirtuins 1 and 4 in peripheral blood leukocytes from patients with type 2 diabetes. Eur J Histochem. 2011;55(1):e10–e10. [DOI: 10.4081/ejh.2011.e10]
  44. Bartoli-Leonard F, Wilkinson FL, Schiro A, Serracino Inglott F, Alexander MY, Weston R. Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovasc Res. 2021. https://doi.org/10.1093/cvr/cvaa134 . [DOI: 10.1093/cvr/cvaa134]
  45. Bartoli-Leonard F, Wilkinson FL, Schiro A, Inglott FS, Alexander MY, Weston R. Suppression of SIRT1 in diabetic conditions induces osteogenic differentiation of human vascular smooth muscle cells via RUNX2 signalling. Sci Rep. 2019;9(1):878. [DOI: 10.1038/s41598-018-37027-2]
  46. Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta. 2015;1852(6):1145–54. [DOI: 10.1016/j.bbadis.2014.10.013]
  47. Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem. 2008;389(3):305–12. [DOI: 10.1515/BC.2008.026]
  48. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–45. [DOI: 10.1016/j.cmet.2012.04.001]
  49. Zeng T, Zhou J, He L, Zheng J, Chen L, Wu C, et al. Blocking nuclear factor-kappa B protects against diet-induced hepatic steatosis and insulin resistance in mice. PLoS ONE. 2016;11(3):e0149677. [DOI: 10.1371/journal.pone.0149677]
  50. Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861–8. [DOI: 10.2337/dc09-1799]
  51. Lin M, Yiu WH, Wu HJ, Chan LYY, Leung JCK, Au WS, et al. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. JASN. 2012;23(1):86–102. [DOI: 10.1681/ASN.2010111210]
  52. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes. Diabetes. 2008;57(11):3090–8. [DOI: 10.2337/db08-0564]
  53. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953–66. [DOI: 10.1016/j.cmet.2014.09.018]
  54. Dai Y, Wang X, Ding Z, Dai D, Mehta JL. DPP-4 inhibitors repress foam cell formation by inhibiting scavenger receptors through protein kinase C pathway. Acta Diabetol. 2014;51(3):471–8. [DOI: 10.1007/s00592-013-0541-3]
  55. Alibashe-Ahmed M, Brioudes E, Reith W, Bosco D, Berney T. Toll-like receptor 4 inhibition prevents autoimmune diabetes in NOD mice. Sci Rep. 2019;9(1):19350. [DOI: 10.1038/s41598-019-55521-z]
  56. Benzler J, Ganjam GK, Pretz D, Oelkrug R, Koch CE, Legler K, et al. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet–induced obesity and glucose intolerance. Diabetes. 2015;64(6):2015–27. [DOI: 10.2337/db14-0093]

Grants

  1. 2018/29/B/NZ7/02662/Narodowe Centrum Nauki

MeSH Term

Apoptosis
Caspases
Cell Proliferation
Cell Survival
Cytokines
Gluconeogenesis
Glucose
Hep G2 Cells
Humans
Hyoscyamus
Hyperglycemia
Hyperinsulinism
Inflammation
Inflammation Mediators
Insulin
Insulin Resistance
MAP Kinase Signaling System
Mitochondria
NF-kappa B
Nortropanes
Oxidative Stress
Plant Extracts
Seeds
Signal Transduction
Sirtuin 1
TOR Serine-Threonine Kinases

Chemicals

Cytokines
Inflammation Mediators
Insulin
NF-kappa B
Nortropanes
Plant Extracts
TOR Serine-Threonine Kinases
Caspases
Sirtuin 1
Glucose

Word Cloud

Created with Highcharts 10.0.0cellsHepG2insulinHyoscyamusalbusglucoseoxidativestresscalysteginesinducedsignalingapoptosispathwayregulationresistancemoleculesmedicinalplantaxishyperinsulinemiahyperglycemiamRNAproteinexpressionlevelsinflammatorymitochondrialIRnortropanealkaloidsmodulationSIRT1/Foxo1/G6PC/mTORBACKGROUND:Chronicsuperphysiologicalconcentrationsknowntriggerseveraltissueorganfailuresincludingchroniclow-gradeinflammationHencescreeningmaycounteractconditionsessentialcurrentexistingtherapeuticstrategiestherebyusederivativesrepresentspromisingregardMETHODS:studyeffectselectedtraditionalisolatedinvestigatedexperimentalmodeldifferentgluconeogenicpathway-relatedexaminedAdditionallycellviabilityextentdysfunctionsassayedusingflowcytometricqRT-PCRtechniquesRESULTS:TreatmentstronglyprotectedinjuredintegritylossInterestinglyefficientlyregulatedimpairedmetabolismstimulationuptakegoverninghepaticgluconeogenesisFurthermorealkaloidalextractrestoreddefectivemainlypromotingInsrtreatedexhibitedsignificantmitigatedresponseevidencedNF-κB/JNK/TLR4downstreamproinflammatorycytokinesrecruitmentCONCLUSION:Overallpresentinvestigationdemonstratesprovidecytoprotectioninsulin/glucosedueNF-κB/JNK/TLR4pathwaysVideoAbstractreduceSIRT1/NF-kB/JNKCalysteginesHyperglycemiaInsulinResistanceNF-κBSirt1

Similar Articles

Cited By (8)