Sleep Leads to Brain-Wide Neural Changes Independent of Allocentric and Egocentric Spatial Training in Humans and Rats.

Anumita Samanta, Laurens S van Rongen, Janine I Rossato, Justin Jacobse, Robby Schoenfeld, Lisa Genzel
Author Information
  1. Anumita Samanta: Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.
  2. Laurens S van Rongen: Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.
  3. Janine I Rossato: Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom.
  4. Justin Jacobse: Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom.
  5. Robby Schoenfeld: Institute of Psychology, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany.
  6. Lisa Genzel: Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.

Abstract

Sleep is important for memory consolidation and systems consolidation in particular, which is thought to occur during sleep. While there has been a significant amount of research regarding the effect of sleep on behavior and certain mechanisms during sleep, evidence that sleep leads to consolidation across the system has been lacking until now. We investigated the role of sleep in the consolidation of spatial memory in both rats and humans using a watermaze task involving allocentric- and egocentric-based training. Analysis of immediate early gene expression in rodents, combined with functional magnetic resonance imaging in humans, elucidated similar behavioral and neural effects in both species. Sleep had a beneficial effect on behavior in rats and a marginally significant effect in humans. Interestingly, sleep led to changes across multiple brain regions at the time of retrieval in both species and in both training conditions. In rats, sleep led to increased gene expression in the hippocampus, striatum, and prefrontal cortex. In the humans, sleep led to an activity increase in brain regions belonging to the executive control network and a decrease in activity in regions belonging to the default mode network. Thus, we provide cross-species evidence for system-level memory consolidation occurring during sleep.

Keywords

References

  1. Neurobiol Learn Mem. 2017 Mar;139:117-127 [PMID: 28057502]
  2. Learn Mem. 2017 Feb 15;24(3):140-144 [PMID: 28202719]
  3. Science. 1998 May 8;280(5365):921-4 [PMID: 9572740]
  4. Annu Rev Neurosci. 1997;20:303-30 [PMID: 9056716]
  5. Behav Neurosci. 1997 Dec;111(6):1197-204 [PMID: 9438789]
  6. Proc R Soc Lond B Biol Sci. 1970 Nov 3;176(1043):161-234 [PMID: 4394740]
  7. Cold Spring Harb Perspect Biol. 2015 Aug 03;7(8):a021766 [PMID: 26238360]
  8. Trends Neurosci. 2011 Oct;34(10):548-59 [PMID: 21889806]
  9. Behav Neurosci. 2010 Aug;124(4):532-40 [PMID: 20695652]
  10. Behav Neurosci. 1989 Oct;103(5):956-61 [PMID: 2803562]
  11. J Neurosci. 2001 Jul 15;21(14):5089-98 [PMID: 11438584]
  12. Neurobiol Learn Mem. 2016 Feb;128:46-55 [PMID: 26748021]
  13. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14466-71 [PMID: 20660746]
  14. Nat Neurosci. 2009 Jul;12(7):919-26 [PMID: 19483687]
  15. J Neurosci. 2004 Jul 21;24(29):6446-56 [PMID: 15269254]
  16. Nat Commun. 2015 Oct 28;6:8729 [PMID: 26507814]
  17. Learn Mem. 1994 Sep-Oct;1(3):203-11 [PMID: 10467597]
  18. Behav Brain Res. 2014 Aug 15;270:47-55 [PMID: 24815214]
  19. Cogn Neurosci. 2013;4(3-4):171-80 [PMID: 24251605]
  20. Nature. 2010 Feb 4;463(7281):657-61 [PMID: 20090680]
  21. Nat Neurosci. 2001 Mar;4(3):289-96 [PMID: 11224546]
  22. J Neurochem. 2004 Jun;89(5):1111-8 [PMID: 15147503]
  23. Nat Neurosci. 1999 Dec;2(12):1120-4 [PMID: 10570490]
  24. Nat Neurosci. 2016 Jul;19(7):959-64 [PMID: 27182818]
  25. Neurobiol Learn Mem. 2008 May;89(4):462-79 [PMID: 17923424]
  26. Trends Neurosci. 2020 Jul;43(7):451-453 [PMID: 32409016]
  27. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10825-30 [PMID: 12149439]
  28. Hippocampus. 2009 Dec;19(12):1199-211 [PMID: 19360853]
  29. Learn Mem. 2018 Jan 16;25(2):67-77 [PMID: 29339558]
  30. Neuroimage. 2010 Oct 15;53(1):303-17 [PMID: 20600998]
  31. Eur J Neurosci. 2008 Sep;28(5):982-96 [PMID: 18717731]
  32. Nature. 2012 Mar 14;484(7392):62-8 [PMID: 22419153]
  33. Nature. 1982 Jun 24;297(5868):681-3 [PMID: 7088155]
  34. J Neurosci. 2020 Nov 18;40(47):9055-9065 [PMID: 33051349]
  35. Curr Biol. 2016 Mar 7;26(5):686-91 [PMID: 26898464]
  36. Nature. 2012 Nov 22;491(7425):547-53 [PMID: 23172213]
  37. Trends Neurosci. 2020 May;43(5):285-299 [PMID: 32353333]
  38. Exp Neurol. 1976 Apr;51(1):78-109 [PMID: 1261644]
  39. PLoS Biol. 2017 Jan 13;15(1):e2000531 [PMID: 28085883]
  40. Soc Cogn Affect Neurosci. 2012 Jun;7(5):604-9 [PMID: 22569188]
  41. J Neurosci. 2011 Jul 13;31(28):10331-9 [PMID: 21753010]
  42. J Cogn Neurosci. 2013 Jan;25(1):74-86 [PMID: 22905821]
  43. Curr Opin Neurobiol. 2011 Jun;21(3):452-9 [PMID: 21371881]
  44. Trends Cogn Sci. 2007 Aug;11(8):356-65 [PMID: 17618161]
  45. Eur J Neurosci. 2020 Apr;51(7):1539-1558 [PMID: 31944427]
  46. Nature. 2018 Dec;564(7734):109-113 [PMID: 30429612]
  47. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13164-9 [PMID: 17670944]
  48. Neuron. 2017 Sep 13;95(6):1406-1419.e5 [PMID: 28910623]
  49. Neurobiol Learn Mem. 1996 Jan;65(1):65-72 [PMID: 8673408]
  50. Nat Neurosci. 2010 Aug;13(8):995-1002 [PMID: 20639874]
  51. Neuroimage. 2015 Mar;108:423-34 [PMID: 25542533]
  52. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14755-62 [PMID: 18812502]
  53. Nat Neurosci. 2012 Oct;15(10):1365-7 [PMID: 22960933]
  54. Sleep. 2010 Nov;33(11):1465-73 [PMID: 21102988]
  55. Hippocampus. 2019 Nov;29(11):1091-1100 [PMID: 31157946]
  56. Neurobiol Learn Mem. 2009 Feb;91(2):186-96 [PMID: 18929674]
  57. Trends Cogn Sci. 2015 Sep;19(9):534-43 [PMID: 26254740]
  58. J Neurosci. 2020 Feb 26;40(9):1909-1919 [PMID: 31959699]
  59. PLoS Biol. 2009 Aug;7(8):e1000173 [PMID: 19688032]
  60. Trends Neurosci. 2014 Jan;37(1):10-9 [PMID: 24210928]
  61. J Neurosci. 2010 Aug 25;30(34):11379-87 [PMID: 20739559]
  62. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7124-9 [PMID: 16636288]
  63. Cereb Cortex. 1994 Jan-Feb;4(1):27-39 [PMID: 8180489]
  64. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4489-94 [PMID: 19255447]
  65. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11376-81 [PMID: 19549821]
  66. Science. 2017 Oct 20;358(6361):369-372 [PMID: 29051381]
  67. Acta Psychol (Amst). 2004 Feb-Mar;115(2-3):105-21 [PMID: 14962396]
  68. Brain Neurosci Adv. 2020 Dec 21;4:2398212820979772 [PMID: 33426302]
  69. Neuron. 2004 Oct 28;44(3):535-45 [PMID: 15504332]
  70. Nat Rev Neurosci. 2005 Feb;6(2):119-30 [PMID: 15685217]
  71. Neurobiol Learn Mem. 2001 Mar;75(2):164-78 [PMID: 11222058]
  72. Neuropsychology. 2004 Jul;18(3):418-25 [PMID: 15291720]
  73. Neurobiol Learn Mem. 2019 Apr;160:3-10 [PMID: 29544727]
  74. Behav Brain Funct. 2010 Jul 02;6:35 [PMID: 20594357]
  75. Neurobiol Learn Mem. 2018 May;151:85-87 [PMID: 29689300]
  76. Behav Brain Res. 2019 May 17;364:281-295 [PMID: 30794853]
  77. Trends Neurosci. 2011 Nov;34(11):591-8 [PMID: 21963089]
  78. Cell. 2017 Aug 24;170(5):986-999.e16 [PMID: 28823559]
  79. Trends Cogn Sci. 2008 Oct;12(10):388-96 [PMID: 18760955]
  80. Neuroimage. 2014 May 1;91:412-9 [PMID: 24412399]
  81. Neurobiol Learn Mem. 2020 Jan;167:107131 [PMID: 31783128]
  82. J Neurosci. 2003 Oct 8;23(27):9116-22 [PMID: 14534245]
  83. Trends Cogn Sci. 2014 Dec;18(12):647-57 [PMID: 25156191]
  84. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9697-701 [PMID: 7568200]
  85. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13251-13256 [PMID: 27803331]

Grants

  1. /Branco Weiss Fellowship-Society in Science

MeSH Term

Animals
Brain
Hippocampus
Humans
Memory Consolidation
Prefrontal Cortex
Rats
Sleep

Word Cloud

Created with Highcharts 10.0.0sleepconsolidationmemoryhumansSleepeffectratsledregionssignificantbehaviorevidenceacrosstraininggeneexpressionspeciesbrainactivitybelongingnetworkimportantsystemsparticularthoughtoccuramountresearchregardingcertainmechanismsleadssystemlackingnowinvestigatedrolespatialusingwatermazetaskinvolvingallocentric-egocentric-basedAnalysisimmediateearlyrodentscombinedfunctionalmagneticresonanceimagingelucidatedsimilarbehavioralneuraleffectsbeneficialmarginallyInterestinglychangesmultipletimeretrievalconditionsincreasedhippocampusstriatumprefrontalcortexincreaseexecutivecontroldecreasedefaultmodeThusprovidecross-speciessystem-leveloccurringLeadsBrain-WideNeuralChangesIndependentAllocentricEgocentricSpatialTrainingHumansRatshumanrat

Similar Articles

Cited By