Brain functional network modeling and analysis based on fMRI: a systematic review.

Zhongyang Wang, Junchang Xin, Zhiqiong Wang, Yudong Yao, Yue Zhao, Wei Qian
Author Information
  1. Zhongyang Wang: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
  2. Junchang Xin: School of Computer Science and Engineering, Northeastern University, Shenyang, China. ORCID
  3. Zhiqiong Wang: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
  4. Yudong Yao: Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ USA.
  5. Yue Zhao: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
  6. Wei Qian: College of Engineering, The University of Texas at El Paso, El Paso, TX USA.

Abstract

In recent years, the number of patients with neurodegenerative diseases (i.e., Alzheimer's disease, Parkinson's disease, mild cognitive impairment) and mental disorders (i.e., depression, anxiety and schizophrenia) have increased dramatically. Researchers have found that complex network analysis can reveal the topology of brain functional networks, such as small-world, scale-free, etc. In the study of brain diseases, it has been found that these topologies have undergoed abnormal changes in different degrees. Therefore, the research of brain functional networks can not only provide a new perspective for understanding the pathological mechanism of neurological and psychiatric diseases, but also provide assistance for the early diagnosis. Focusing on the study of human brain functional networks, this paper reviews the research results in recent years. First, this paper introduces the background of the study of brain functional networks under complex network theory and the important role of topological properties in the study of brain diseases. Second, the paper describes how to construct a brain functional network using neural image data. Third, the common methods of functional network analysis, including network structure analysis and disease classification, are introduced. Fourth, the role of brain functional networks in pathological study, analysis and diagnosis of brain functional diseases is studied. Finally, the paper summarizes the existing studies of brain functional networks and points out the problems and future research directions.

Keywords

References

  1. Nat Methods. 2013 Jun;10(6):524-39 [PMID: 23722212]
  2. Behav Brain Res. 2017 Mar 30;322(Pt B):339-350 [PMID: 27345822]
  3. Brain Struct Funct. 2017 Mar;222(2):923-942 [PMID: 27357309]
  4. IEEE Trans Biomed Eng. 2013 Sep;60(9):2472-83 [PMID: 23613020]
  5. Front Neurosci. 2018 Mar 01;12:122 [PMID: 29545741]
  6. Nat Rev Neurosci. 2012 Apr 13;13(5):336-49 [PMID: 22498897]
  7. Neuroimage. 2009 Mar;45(1 Suppl):S199-209 [PMID: 19070668]
  8. Hum Brain Mapp. 2009 Jul;30(7):2197-206 [PMID: 18830956]
  9. Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34 [PMID: 20471808]
  10. Cogn Neurodyn. 2017 Feb;11(1):99-111 [PMID: 28174616]
  11. J Cereb Blood Flow Metab. 2013 Sep;33(9):1347-54 [PMID: 23756687]
  12. Brain Inform. 2015 Dec;2(4):211-223 [PMID: 27747563]
  13. Cereb Cortex. 2018 Mar 1;28(3):924-935 [PMID: 28108494]
  14. IEEE Trans Biomed Eng. 2019 Mar;66(3):864-872 [PMID: 30059291]
  15. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 [PMID: 20176931]
  16. Schizophr Res. 2017 Nov;189:9-18 [PMID: 28268041]
  17. Hum Brain Mapp. 2017 Apr;38(4):2276-2325 [PMID: 28145075]
  18. Neuroimage. 2018 Jun;173:127-145 [PMID: 29476914]
  19. Neuroreport. 2012 Dec 5;23(17):1006-11 [PMID: 23044496]
  20. Brain Inform. 2015 Dec;2(4):253-264 [PMID: 27747561]
  21. Comput Med Imaging Graph. 2009 Mar;33(2):131-9 [PMID: 19111443]
  22. Neuroimage. 2018 Jun;173:240-248 [PMID: 29454934]
  23. Sci Rep. 2016 Oct 06;6:34824 [PMID: 27708381]
  24. IEEE Trans Med Imaging. 2015 Nov;34(11):2333-42 [PMID: 25966472]
  25. J Neurotrauma. 2017 Mar 15;34(6):1278-1282 [PMID: 27937140]
  26. Trends Cogn Sci. 2010 Jun;14(6):277-90 [PMID: 20493761]
  27. Brain Inform. 2015 Mar;2(1):45-52 [PMID: 27747502]
  28. Cereb Cortex. 2005 Sep;15(9):1332-42 [PMID: 15635061]
  29. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  30. Hum Brain Mapp. 2018 Apr;39(4):1647-1663 [PMID: 29314415]
  31. Sci Rep. 2018 Dec 10;8(1):17754 [PMID: 30532009]
  32. Neuron. 2010 Sep 9;67(5):735-48 [PMID: 20826306]
  33. Hum Brain Mapp. 2019 Jun 15;40(9):2771-2786 [PMID: 30864248]
  34. Nat Neurosci. 2017 Feb 23;20(3):353-364 [PMID: 28230844]
  35. KDD. 2011;:931-939 [PMID: 26952033]
  36. Hum Brain Mapp. 2019 Jun 15;40(9):2596-2610 [PMID: 30811782]
  37. BMC Cell Biol. 2007 Jul 10;8 Suppl 1:S5 [PMID: 17634095]
  38. IEEE Trans Med Imaging. 2015 Oct;34(10):2036-45 [PMID: 25838519]
  39. Hum Brain Mapp. 2004 May;22(1):63-71 [PMID: 15083527]
  40. Neuroimage. 2011 Feb 14;54(4):2683-94 [PMID: 21073960]
  41. MAGMA. 2010 Dec;23(5-6):289-307 [PMID: 20972883]
  42. Clin Neurophysiol. 1999 Nov;110(11):1842-57 [PMID: 10576479]
  43. Neuroimage. 2016 Jan 1;124(Pt B):1065-1068 [PMID: 26574120]
  44. Neuroradiology. 2017 May;59(5):507-515 [PMID: 28386687]
  45. Nat Med. 2017 Jan;23(1):28-38 [PMID: 27918562]
  46. Neuron. 2011 Nov 17;72(4):665-78 [PMID: 22099467]
  47. Cogn Neurodyn. 2020 Aug;14(4):425-442 [PMID: 32655708]
  48. Brain Topogr. 2018 Jul;31(4):577-590 [PMID: 29663098]
  49. Int J Approx Reason. 2014 Jan 1;56(1 Pt 1): [PMID: 24319317]
  50. Curr Opin Neurobiol. 2018 Oct;52:42-47 [PMID: 29704749]
  51. Neuroimage. 2017 Jul 15;155:490-502 [PMID: 28412440]
  52. Neuron. 2011 Jan 27;69(2):387-96 [PMID: 21262474]
  53. Biol Psychiatry. 2010 Mar 15;67(6):584-7 [PMID: 19833321]
  54. Front Comput Neurosci. 2014 Feb 21;8:14 [PMID: 24600382]
  55. IEEE Trans Med Imaging. 2016 Feb;35(2):529-38 [PMID: 26415166]
  56. Sci Rep. 2017 Jul 26;7(1):6537 [PMID: 28747717]
  57. Cogn Neurodyn. 2019 Dec;13(6):519-530 [PMID: 31741689]
  58. Biol Psychol. 2018 May;135:102-111 [PMID: 29548807]
  59. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  60. Front Neurosci. 2017 May 19;11:267 [PMID: 28579940]
  61. Neuroimage. 2005 May 1;25(4):1325-35 [PMID: 15850749]
  62. Trends Cogn Sci. 2013 Dec;17(12):683-96 [PMID: 24231140]
  63. Neuron. 2017 Jun 7;94(5):1010-1026 [PMID: 28595045]
  64. Hum Brain Mapp. 2018 Feb;39(2):644-661 [PMID: 29105239]
  65. Front Syst Neurosci. 2010 Jun 07;4:16 [PMID: 20589099]
  66. Hum Brain Mapp. 2017 Mar;38(3):1604-1621 [PMID: 27859960]
  67. Cereb Cortex. 2017 Mar 1;27(3):1831-1840 [PMID: 26874182]
  68. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  69. Neuroimage. 2018 May 15;172:896-902 [PMID: 29292136]
  70. J Neurosci Methods. 2017 Apr 15;282:69-80 [PMID: 28286064]
  71. Brain Connect. 2014 Jun;4(5):347-60 [PMID: 24766561]
  72. IEEE Trans Neural Syst Rehabil Eng. 2019 Jan;27(1):22-30 [PMID: 30561346]
  73. PLoS One. 2010 Dec 22;5(12):e15238 [PMID: 21203551]
  74. J Neurotrauma. 2017 Mar 1;34(5):1045-1053 [PMID: 27676221]