Investigation of the effects of electrochemical reactions on complex metal tribocorrosion within the human body.

Thomas S Welles, Jeongmin Ahn
Author Information
  1. Thomas S Welles: Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244-1240, USA.
  2. Jeongmin Ahn: Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244-1240, USA.

Abstract

Although total hip arthroplasty (THA) is considered to be the most successful orthopedic operation in restoring mobility and relieving pain, common Metal-on-Metal (MoM) implants developed in the past decade suffer from severe inflammatory reactions of the surrounding tissue caused by the premature corrosion and degradation of the implant. A substantial amount of research has been dedicated to the investigation of mechanically driven fretting and crevice corrosion as the primary mechanism of implant failure. However, the exact mechanism by which hip implant breakdown occurs remains unknown, as current fretting and crevice corrosion studies have failed to completely replicate the corrosion characteristics of recovered implants. Here, we show that minor electric potential oscillations on a model hip implant replicate the corrosion of failed implants without the introduction of mechanical wear. We found in a controlled lab setting that small electrical oscillations, of similar frequency and magnitude as those resulting from ambient electromagnetic waves interacting with the metal of the implant, can force electrochemical reactions within a simulated synovial fluid environment that have not been previously predicted. In lab testing we have shown the replication of titanium, phosphorous, and oxygen deposition onto the surface of ASTM astm:F75 CoCrMo metal alloy test specimens, matching the chemical composition of previously retrieved wear particles from failed patient prosthetics. Our results demonstrate that the electrical activity and ensuing electrochemical activity excites two corrosion failure modes: direct dissolution of the medically implantable alloy, leaching metal ions into the body, and surface deposition growth, forming the precursor of secondary wear particles. We anticipate our findings to be the foundation for the future development and testing of electrochemically resistant implantable material.

Keywords

References

  1. Scand J Work Environ Health. 2001 Apr;27(2):140-5 [PMID: 11409597]
  2. Biomater Res. 2018 Dec 05;22:33 [PMID: 30534414]
  3. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:390-398 [PMID: 28629033]
  4. Int J Biometeorol. 1973 Sep;17(3):221-5 [PMID: 4756235]
  5. Clin Orthop Relat Res. 2016 Oct;474(10):2143-4 [PMID: 27154529]
  6. Diabetes Care. 2017 Jan;40(1):63-68 [PMID: 27815290]
  7. Clin Orthop Relat Res. 2012 Aug;470(8):2325-31 [PMID: 22692823]
  8. Clin Orthop Relat Res. 2016 Feb;474(2):432-40 [PMID: 26497881]
  9. Bioengineered. 2016 Jul 3;7(4):241-5 [PMID: 27282242]
  10. Scand J Work Environ Health. 1995 Oct;21(5):335-44 [PMID: 8571089]
  11. Bioelectromagnetics. 1981;2(4):403-6 [PMID: 7326061]
  12. Biomaterials. 2012 Aug;33(22):5487-503 [PMID: 22575833]
  13. Biosens Bioelectron. 2018 Nov 30;120:188-194 [PMID: 30193191]
  14. Bioelectromagnetics. 2000 Dec;21(8):575-83 [PMID: 11102947]
  15. Clin Orthop Relat Res. 2016 Oct;474(10):2134-42 [PMID: 26987866]
  16. Clin Orthop Relat Res. 2017 Dec;475(12):3026-3043 [PMID: 28884275]
  17. IEEE Trans Biomed Eng. 2004 Aug;51(8):1460-8 [PMID: 15311833]
  18. Med Eng Phys. 2018 Feb;52:1-9 [PMID: 29290499]
  19. Health Phys. 2009 Apr;96(4):504-14 [PMID: 19276710]
  20. Clin Orthop Relat Res. 2014 Feb;472(2):523-8 [PMID: 23572349]
  21. J Arthroplasty. 2017 Jan;32(1):291-295 [PMID: 27491446]
  22. Clin Orthop Relat Res. 2018 Feb;476(2):261-278 [PMID: 29529655]
  23. Bioelectromagnetics. 2014 Feb;35(2):79-90 [PMID: 24375548]
  24. Front Bioeng Biotechnol. 2019 Jul 30;7:176 [PMID: 31417898]
  25. Clin Orthop Relat Res. 2015 Jul;473(7):2314-5 [PMID: 25673622]
  26. Colloids Surf B Biointerfaces. 2020 Apr;188:110797 [PMID: 31958621]
  27. Sci Rep. 2017 Sep 8;7(1):10952 [PMID: 28887488]
  28. Clin Biomech (Bristol, Avon). 2016 Feb;32:20-7 [PMID: 26775230]
  29. Bioelectromagnetics. 1996;17(3):230-41 [PMID: 8809363]
  30. Nanomedicine. 2017 Apr;13(3):1205-1217 [PMID: 27888094]
  31. Med Biol Eng Comput. 1999 Nov;37(6):727-32 [PMID: 10723879]

Word Cloud

Created with Highcharts 10.0.0corrosionimplanthipwearmetalelectrochemicalimplantsreactionsfailurefailedarthroplastydrivenfrettingcrevicemechanismreplicatepotentialoscillationslabelectricalwithinpreviouslytestingdepositionsurfacealloyparticlesactivityimplantablebodyAlthoughtotalTHAconsideredsuccessfulorthopedicoperationrestoringmobilityrelievingpaincommonMetal-on-MetalMoMdevelopedpastdecadesuffersevereinflammatorysurroundingtissuecausedprematuredegradationsubstantialamountresearchdedicatedinvestigationmechanicallyprimaryHoweverexactbreakdownoccursremainsunknowncurrentstudiescompletelycharacteristicsrecoveredshowminorelectricmodelwithoutintroductionmechanicalfoundcontrolledsettingsmallsimilarfrequencymagnituderesultingambientelectromagneticwavesinteractingcanforcesimulatedsynovialfluidenvironmentpredictedshownreplicationtitaniumphosphorousoxygenontoASTMastm:F75CoCrMotestspecimensmatchingchemicalcompositionretrievedpatientprostheticsresultsdemonstrateensuingexcitestwomodes:directdissolutionmedicallyleachingionsgrowthformingprecursorsecondaryanticipatefindingsfoundationfuturedevelopmentelectrochemicallyresistantmaterialInvestigationeffectscomplextribocorrosionhumanCreviceElectricoscillationFrettingImplantNon-mechanicallyOscillatoryTotalTribocorrosion

Similar Articles

Cited By