β-Defensin from the Asian Sea Bass, Lates calcarifer: Molecular Prediction and Phylogenetic Analysis.

Athira Raveendran, Dhanya Lenin K L, Anju M V, Neelima S, Anooja V V, Athira P P, Archana K, Rosamma Philip, Swapna P Antony
Author Information
  1. Athira Raveendran: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  2. Dhanya Lenin K L: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  3. Anju M V: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  4. Neelima S: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  5. Anooja V V: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  6. Athira P P: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  7. Archana K: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  8. Rosamma Philip: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
  9. Swapna P Antony: Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India. swapnapantony@gmail.com. ORCID

Abstract

Antimicrobial peptides (AMPs) are an important element of the innate immune system of all living organisms and serve as a barrier that safeguards the organisms against a wide range of pathogens. Fishes are proven to be a prospective source of AMPs, and β-defensins form an important family of AMPs with potent antimicrobial, chemotactic and immunomodulatory activities. The present study reports a β-defensin AMP sequence (Lc-BD) from the Asian sea bass, Lates calcarifer, a commercially important fish species in tropical and subtropical regions of Asia and the Pacific. A 202-bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) was obtained from the mRNA of gill tissue by RT-PCR. The deduced aa sequence of Lc-BD possessed a signal and a mature peptide region with 20 and 43 aa residues, respectively. Lc-BD was characterized at the molecular level, and a molecular weight of 5.24 kDa and a net charge of +4.5 was predicted for the mature peptide. The molecular characterization of Lc-BD revealed the presence of three intramolecular disulphide bonds involving the six conserved cysteine residues in the sequence, and the phylogenetic analysis of Lc-BD showed a close relationship with β-defensins from fishes like Siniperca chuatsi, Argyrosomus regius, Trachinotus ovatus and Oplegnathus fasciatus.

Keywords

References

  1. Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 2013:675391. https://doi.org/10.1155/2013/675391 [DOI: 10.1155/2013/675391]
  2. Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sci 2:1–33. https://doi.org/10.2478/s11535-007-0010-5 [DOI: 10.2478/s11535-007-0010-5]
  3. Bahar A, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575. https://doi.org/10.3390/ph6121543 [DOI: 10.3390/ph6121543]
  4. Bechinger B, Gorr SU (2017) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96:254–260. https://doi.org/10.1177/0022034516679973 [DOI: 10.1177/0022034516679973]
  5. Rajanbabu V, Chen JY (2011) Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32:415–420. https://doi.org/10.1016/j.peptides.2010.11.005 [DOI: 10.1016/j.peptides.2010.11.005]
  6. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194 [DOI: 10.3389/fcimb.2016.00194]
  7. Neshani A, Zare H, Eidgahi MRA, Khaledi A, Ghazvini K (2019) Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacol Toxicol 20:33. https://doi.org/10.1186/s40360-019-0309-7 [DOI: 10.1186/s40360-019-0309-7]
  8. Haney EF, Mansour SC, Hancock RE (2017) Antimicrobial peptides: an introduction. In: Hansen P. (ed) Antimicrobial Peptides. Methods Mol Biol 1548. Humana Press, New York, pp 3-22. https://doi.org/10.1007/978-1-4939-6737-7_1
  9. Chaturvedi P, Dhanik M, Pande A (2015) Molecular characterization and in silico analysis of defensin from Tor putitora (Hamilton). Probiotics Antimicrob Proteins 7:207–215. https://doi.org/10.1007/s12602-015-9197-3 [DOI: 10.1007/s12602-015-9197-3]
  10. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286. https://doi.org/10.3390/molecules171012276 [DOI: 10.3390/molecules171012276]
  11. Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R (2018) Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. Microb Pathog 114:50–56. https://doi.org/10.1016/j.micpath.2017.11.039 [DOI: 10.1016/j.micpath.2017.11.039]
  12. Valero Y, Chaves-Pozo E, Meseguer J, Esteban MA, Cuesta A (2013) Biological role of fish antimicrobial peptides. In: Hak YI (ed) Seong MD. Antimicrobial Peptides, Nova Science Publishers, pp 31–60
  13. Ganz T (2011) Hepcidin and iron regulation, 10 years later. Blood 117:4425–4433. https://doi.org/10.1182/blood-2011-01-258467 [DOI: 10.1182/blood-2011-01-258467]
  14. Lauth X, Shike H, Burns JC, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Nizet V, Taylor SW, Shimizu C, Bulet P (2002) Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem 277:5030–5039. https://doi.org/10.1074/jbc.M109173200 [DOI: 10.1074/jbc.M109173200]
  15. Jiang H, Hu Y, Wei X, Xiao X, Jakovlić I, Liu X, Su J, Yuan G (2018) Chemotactic effect of β-defensin 1 on macrophages in Megalobrama amblycephala. Fish Shellfish Immunol 74:35–42. https://doi.org/10.1016/j.fsi.2017.12.016 [DOI: 10.1016/j.fsi.2017.12.016]
  16. Zhou Y, Lei Y, Cao Z, Chen X, Sun Y, Xu Y, Guo W, Wang S, Liu C (2019) A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. Dev Comp Immunol 92:105–115. https://doi.org/10.1016/j.dci.2018.11.011 [DOI: 10.1016/j.dci.2018.11.011]
  17. Cuesta A, Meseguer J, Esteban MÁ (2011) Molecular and functional characterization of the gilthead seabream β-defensin demonstrate its chemotactic and antimicrobial activity. Mol Immunol 48:1432–1438. https://doi.org/10.1016/j.molimm.2011.03.022 [DOI: 10.1016/j.molimm.2011.03.022]
  18. Seebah S, Suresh A, Zhuo S, Choong YH, Chua H, Chuon D, Beuerman R, Verma C (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35:D265–D268. https://doi.org/10.1093/nar/gkl866 [DOI: 10.1093/nar/gkl866]
  19. Wu Q, Patočka J, Kuča K (2018) Insect antimicrobial peptides, a mini-review. Toxins 10:461. https://doi.org/10.3390/toxins10110461 [DOI: 10.3390/toxins10110461]
  20. Zou J, Mercier C, Koussounadis A, Secombes C (2007) Discovery of multiple beta-defensin-like homologues in teleost fish. Mol Immunol 44:638–647. https://doi.org/10.1016/j.molimm.2006.01.012 [DOI: 10.1016/j.molimm.2006.01.012]
  21. Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol Immunol 45:828–838. https://doi.org/10.1016/j.molimm.2007.06.354 [DOI: 10.1016/j.molimm.2007.06.354]
  22. Diaz GA (2010) Defensins and cystein rich peptides: two types of antimicrobial peptides in marine molluscs. Invert Surviv J 7:157–164
  23. Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med 83:587–595. https://doi.org/10.1007/s00109-005-0657-1 [DOI: 10.1007/s00109-005-0657-1]
  24. Falco A, Chico V, Marroqui L, Perez L, Coll JM, Estepa A (2008) Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Mol Immunol 45:757–765. https://doi.org/10.1016/j.molimm.2007.06.358 [DOI: 10.1016/j.molimm.2007.06.358]
  25. Jin JY, Zhou L, Wang Y, Li Z, Zhao JG, Zhang QY, Gui JF (2010) Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS One 5:e12883. https://doi.org/10.1371/journal.pone.0012883 [DOI: 10.1371/journal.pone.0012883]
  26. Casadei E, Wang T, Zou J, Vecino JLG, Wadsworth S, Secombes CJ (2009) Characterization of three novel β-defensin antimicrobial peptides in rainbow trout (Oncorhynchus mykiss). Mol Immunol 46:3358–3366. https://doi.org/10.1016/j.molimm.2009.07.018 [DOI: 10.1016/j.molimm.2009.07.018]
  27. Zhao JG, Zhou L, Jin JY, Zhao Z, Lan J, Zhang YB, Zhang QY, Gui JF (2009) Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-κB and Sp1 of a medaka β-defensin. Dev Comp Immunol 33:624–637. https://doi.org/10.1016/j.dci.2008.11.006 [DOI: 10.1016/j.dci.2008.11.006]
  28. Nam BH, Moon JY, Kim YO, Kong HJ, Kim WJ, Lee SJ, Kim KK (2010) Multiple β-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol 28:267–274. https://doi.org/10.1016/j.fsi.2009.11.004 [DOI: 10.1016/j.fsi.2009.11.004]
  29. Wang G, Li J, Zou P, Xie H, Huang B, Nie P, Chang M (2012) Expression pattern, promoter activity and bactericidal property of β-defensin from the mandarin fish Siniperca chuatsi. Fish Shellfish Immunol 33:522–531. https://doi.org/10.1016/j.fsi.2012.06.003 [DOI: 10.1016/j.fsi.2012.06.003]
  30. van der Marel M, Adamek M, Gonzalez SF, Frost P, Rombout JH, Wiegertjes GF, Savelkoul HF, Steinhagen D (2012) Molecular cloning and expression of two β-defensin and two mucin genes in common carp (Cyprinus carpio L.) and their up-regulation after β-glucan feeding. Fish Shellfish Immunol 32:494–501. https://doi.org/10.1080/09168451.2014.885830 [DOI: 10.1080/09168451.2014.885830]
  31. Ruangsri J, Kitani Y, Kiron V, Lokesh J, Brinchmann MF, Karlsen BO, Fernandes JM (2013) A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One 8:e62302. https://doi.org/10.1371/journal.pone.0062302 [DOI: 10.1371/journal.pone.0062302]
  32. Chen Y, Zhao H, Zhang X, Luo H, Xue X, Li Z, Yao B (2013) Identification, expression and bioactivity of Paramisgurnus dabryanus β-defensin that might be involved in immune defense against bacterial infection. Fish Shellfish Immunol 35:399–406. https://doi.org/10.1016/j.fsi.2013.04.049 [DOI: 10.1016/j.fsi.2013.04.049]
  33. Liang T, Wang DD, Zhang GR, Wei KJ, Wang WM, Zou GW (2013) Molecular cloning and expression analysis of two β-defensin genes in the blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 166:91–98. https://doi.org/10.1016/j.cbpb.2013.07.006 [DOI: 10.1016/j.cbpb.2013.07.006]
  34. Dong JJ, Wu F, Ye X, Sun CF, Tian YY, Lu MX, Chen ZH (2015) β-Defensin in Nile tilapia (Oreochromis niloticus): sequence, tissue expression, and anti-bacterial activity of synthetic peptides. Gene 566:23–31. https://doi.org/10.1016/j.gene.2015.04.025 [DOI: 10.1016/j.gene.2015.04.025]
  35. Zhu J, Wang H, Wang J, Wang X, Peng S, Geng Y, Wang K, Ouyang P, Li Z, Huang X, Chen D (2017) Identification and characterization of a β-defensin gene involved in the immune defense response of channel catfish, Ictalurus punctatus. Mol Immunol 85:256–264. https://doi.org/10.1016/j.molimm.2017.03.009 [DOI: 10.1016/j.molimm.2017.03.009]
  36. Yang K, Hou B, Ren F, Zhou H, Zhao T (2019) Characterization of grass carp (Ctenopharyngodon idella) beta-defensin 1: implications for its role in inflammation control. Biosci Biotechnol Biochem 83:87–94. https://doi.org/10.1080/09168451.2018.1519386 [DOI: 10.1080/09168451.2018.1519386]
  37. Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589. https://doi.org/10.1016/0952-7915(94)90145-7 [DOI: 10.1016/0952-7915(94)90145-7]
  38. Anooja VV, Anju MV, Athira PP, Archana K, Radhakrishnan CK, Philip R (2020) Structural, functional and phylogenetic analysis of a beta defensin gene from the Whipfin silverbiddy, Gerres filamentosus (Cuvier, 1829). Gene Reports 21:100805. https://doi.org/10.1016/j.genrep.2020.100805 [DOI: 10.1016/j.genrep.2020.100805]
  39. Barnes AC, Trewin B, Snape N, Kvennefors ECE, Baiano JC (2011) Two hepcidin-like antimicrobial peptides in Barramundi Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide. Fish Shellfish Immunol 31:350–357. https://doi.org/10.1016/j.fsi.2011.05.027 [DOI: 10.1016/j.fsi.2011.05.027]
  40. Taheri B, Mohammadi M, Nabipour I, Momenzadeh N, Roozbehani M (2018) Identification of novel antimicrobial peptide from Asian sea bass (Lates calcarifer) by in silico and activity characterization. PloS One 13:e0206578. https://doi.org/10.1371/journal.pone.0206578 [DOI: 10.1371/journal.pone.0206578]
  41. Katzenback B (2015) Antimicrobial peptides as mediators of innate immunity in teleosts. Biology 4:607–639. https://doi.org/10.3390/biology4040607 [DOI: 10.3390/biology4040607]
  42. Ganz T (2004) Hepcidin in iron metabolism. Curr Opin Hematol 11:251–254. https://doi.org/10.1097/00062752-200407000-00004 [DOI: 10.1097/00062752-200407000-00004]
  43. Peng K, Wang JH, Sheng JQ, Zeng LG, Hong YJ (2012) Molecular characterization and immune analysis of a defensin from freshwater pearl mussel, Hyriopsis schlegelii. Aquaculture 334:45–50. https://doi.org/10.1016/j.aquaculture.2011.12.039 [DOI: 10.1016/j.aquaculture.2011.12.039]
  44. Bauer F, Schweimer K, Klüver E, Conejo-Garcia JR, Forssmann WG, Rösch P, Andermann K, Sticht H (2001) Structure determination of human and murine β-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci 10:2470–2479. https://doi.org/10.1110/ps.24401 [DOI: 10.1110/ps.24401]
  45. Islam MM, Kobayashi K, Kidokoro SI, Kuroda Y (2019) Hydrophobic surface residues can stabilize a protein through improved water–protein interactions. FEBS J 286:4122–4134. https://doi.org/10.1111/febs.14941 [DOI: 10.1111/febs.14941]
  46. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406. https://doi.org/10.1128/AAC.00925-06 [DOI: 10.1128/AAC.00925-06]
  47. Wang G, Mishra B (2012) The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Front Immunol 3:221. https://doi.org/10.3389/fimmu.2012.00221 [DOI: 10.3389/fimmu.2012.00221]
  48. Ventura S (2005) Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 4:1–8. https://doi.org/10.1186/2F1475-2859-4-11 [DOI: 10.1186/2F1475-2859-4-11]
  49. Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinf 8:65. https://doi.org/10.1186/1471-2105-8-65 [DOI: 10.1186/1471-2105-8-65]
  50. Torrent M, Andreu D, Nogués VM, Boix E (2011) Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6:e16968. https://doi.org/10.1371/journal.pone.0016968 [DOI: 10.1371/journal.pone.0016968]
  51. Semple F, Dorin JR (2012) β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 4:337–348. https://doi.org/10.1159/000336619 [DOI: 10.1159/000336619]
  52. Hanaoka Y, Yamaguchi Y, Yamamoto H, Ishii M et al (2016) In vitro and In vivo anticancer activity of human β-defensin-3 and its mouse homolog. Anticancer Res 36:5999–6004. https://doi.org/10.21873/anticanres.11188
  53. Guo M, Wei J, Huang X, Huang Y, Qin Q (2012) Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol 32:828–838. https://doi.org/10.1016/j.fsi.2012.02.005 [DOI: 10.1016/j.fsi.2012.02.005]

MeSH Term

Amino Acids
Animals
Perciformes
Phylogeny
Prospective Studies
beta-Defensins

Chemicals

Amino Acids
beta-Defensins

Word Cloud

Created with Highcharts 10.0.0Lc-BDAMPsimportantsequenceaapeptidemolecularAntimicrobialorganismsβ-defensinsβ-defensinAsianbassLatesmatureresidues5characterizationSeaMolecularpeptideselementinnateimmunesystemlivingservebarriersafeguardswiderangepathogensFishesprovenprospectivesourceformfamilypotentantimicrobialchemotacticimmunomodulatoryactivitiespresentstudyreportsAMPseacalcarifercommerciallyfishspeciestropicalsubtropicalregionsAsiaPacific202-bpcDNAfragmentopenreadingframeencoding63aminoacidsobtainedmRNAgilltissueRT-PCRdeducedpossessedsignalregion2043respectivelycharacterizedlevelweight24kDanetcharge+4predictedrevealedpresencethreeintramoleculardisulphidebondsinvolvingsix conservedcysteinephylogeneticanalysisshowedcloserelationshipfisheslikeSinipercachuatsiArgyrosomusregiusTrachinotusovatusOplegnathusfasciatusβ-DefensinBasscalcarifer:PredictionPhylogeneticAnalysisPhylogeny

Similar Articles

Cited By