Lipid Analysis by Gas Chromatography and Gas Chromatography-Mass Spectrometry.

Mathias Brands, Philipp Gutbrod, Peter Dörmann
Author Information
  1. Mathias Brands: Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany.
  2. Philipp Gutbrod: Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany.
  3. Peter Dörmann: Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany. doermann@uni-bonn.de.

Abstract

Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) represent powerful tools for the quantitative and structural analysis of plant lipids. Here, we outline protocols for the isolation, separation, and derivatization of plant lipids for subsequent GC and GC-MS analysis. Plant lipids are extracted with organic solvents and separated according to their polarity by thin-layer chromatography or solid phase extraction. As most lipids are not volatile, the analytes are derivatized by transmethylation or trimethylsilylation to enable the transition of the molecules into the gas phase. After separation on the polymer matrix of the GC column, the analytes are detected by flame ionization or mass spectrometry. This chapter includes methods suitable for the analysis of lipid-bound or free fatty acids, long chain alcohols, and monoacylglycerols and for the determination of double bond positions in fatty acids.

Keywords

References

  1. James AT, Martin AJP (1952) Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 50:679–690. https://doi.org/10.1042/bj0500679 [DOI: 10.1042/bj0500679]
  2. McNair H, Miller J (1997) Basic gas chromatography. Wiley, Hoboken, ISBN 0-471-17261-8
  3. Bartle KD, Myers P (2002) History of gas chromatography. Trends Analyt Chem 21(9–10):547–557. https://doi.org/10.1016/S0165-9936(02)00806-3 [DOI: 10.1016/S0165-9936(02)00806-3]
  4. Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157(1–2):414–421. https://doi.org/10.1016/j.chroma.2007.05.044 [DOI: 10.1016/j.chroma.2007.05.044]
  5. Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281(5):2470–2477. https://doi.org/10.1074/jbc.M509222200 [DOI: 10.1074/jbc.M509222200]
  6. Destaillats F, Cruz-Hernandez C, Nagy K, Dionisi F (2010) Identification of monoacylglycerol regio-isomers by gas chromatography-mass spectrometry. J Chromat B 1217:1543–1548. https://doi.org/10.1016/j.chroma.2010.01.016 [DOI: 10.1016/j.chroma.2010.01.016]
  7. Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145. https://doi.org/10.1016/0003-2697(86)90132-6 [DOI: 10.1016/0003-2697(86)90132-6]
  8. de Saint Laumer J, Leocata S, Tissot E, Baroux L, Kampf DM, Merle P, Boschung A, Seyfried M, Chaintreau A (2015) Prediction of response factors for gas chromatography with flame ionization detection: algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites. J Sep Sci 38(18):3209–3217. https://doi.org/10.1002/jssc.201500106 [DOI: 10.1002/jssc.201500106]
  9. Francis GW (1981) Alkylthiolation for the determination of double-bond position in unsaturated fatty acid esters. Chem Phys Lipids 29:369–374. https://doi.org/10.1016/0009-3084(81)90070-0 [DOI: 10.1016/0009-3084(81)90070-0]
  10. Weston R, Derner JD, Murrieta CM, Rule CD, Hess BW (2006) Comparison of catalysts for direct transesterification of fatty acids in freeze dried forage samples. Crop Sci 48:1636–1641. https://doi.org/10.2135/cropsci2007.07.0376sc [DOI: 10.2135/cropsci2007.07.0376sc]
  11. Christie WW (1993) In: Christie WW (ed) Preparation of ester derivatives of fatty acids for chromatographic analysis. Advances in lipid methodology-two. Oily Press, Dundee
  12. Morrison WR, Smith LM (1964) Preparation of FAMEs and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res 5(4):600–608 [DOI: 10.1016/S0022-2275(20)40190-7]
  13. Luddy FE, Barford RA, Rimenschneider RW (1960) Direct conversion of lipid components to their fatty acid methyl esters. J Am Oil Chem Soc 37:447–451. https://doi.org/10.1007/BF02631205 [DOI: 10.1007/BF02631205]
  14. Schlenk H, Gellermann JL (1960) Esterification of fatty acids with diazomethane on a small scale. Anal Chem 32(11):1412–1414. https://doi.org/10.1021/ac60167a011 [DOI: 10.1021/ac60167a011]

MeSH Term

Chromatography, Gas
Fatty Acids
Fatty Acids, Nonesterified
Gas Chromatography-Mass Spectrometry
Glycerol
Lipids
Membrane Lipids
Plants
Solvents

Chemicals

Fatty Acids
Fatty Acids, Nonesterified
Lipids
Membrane Lipids
Solvents
Glycerol

Word Cloud

Created with Highcharts 10.0.0GaschromatographylipidsGCspectrometryanalysisacidsgasGC-MSplantseparationphaseanalytesfattybondchromatography-massrepresentpowerfultoolsquantitativestructuraloutlineprotocolsisolationderivatizationsubsequentPlantextractedorganicsolventsseparatedaccordingpolaritythin-layersolidextractionvolatilederivatizedtransmethylationtrimethylsilylationenabletransitionmoleculespolymermatrixcolumndetectedflameionizationmasschapterincludesmethodssuitablelipid-boundfreelongchainalcoholsmonoacylglycerolsdeterminationdoublepositionsLipidAnalysisChromatographyChromatography-MassSpectrometryAlcoholsDoublepositionFattyMassMethylestersMonoacylglycerolsSilylationThin-layer

Similar Articles

Cited By