Exercising for Insulin Sensitivity - Is There a Mechanistic Relationship With Quantitative Changes in Skeletal Muscle Mass?

Jasmine Paquin, Jean-Christophe Lagacé, Martin Brochu, Isabelle J Dionne
Author Information
  1. Jasmine Paquin: Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
  2. Jean-Christophe Lagacé: Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
  3. Martin Brochu: Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
  4. Isabelle J Dionne: Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.

Abstract

Skeletal muscle (SM) tissue has been repetitively shown to play a major role in whole-body glucose homeostasis and overall metabolic health. Hence, SM hypertrophy through resistance training (RT) has been suggested to be favorable to glucose homeostasis in different populations, from young healthy to type 2 diabetic (T2D) individuals. While RT has been shown to contribute to improved metabolic health, including insulin sensitivity surrogates, in multiple studies, a universal understanding of a mechanistic explanation is currently lacking. Furthermore, exercised-improved glucose homeostasis and quantitative changes of SM mass have been hypothesized to be concurrent but not necessarily causally associated. With a straightforward focus on exercise interventions, this narrative review aims to highlight the current level of evidence of the impact of SM hypertrophy on glucose homeostasis, as well various mechanisms that are likely to explain those effects. These mechanistic insights could provide a strengthened rationale for future research assessing alternative RT strategies to the current classical modalities, such as low-load, high repetition RT or high-volume circuit-style RT, in metabolically impaired populations.

Keywords

References

  1. Infusionstherapie. 1990 Apr;17(2):108-12 [PMID: 2191919]
  2. BMC Sports Sci Med Rehabil. 2018 Nov 23;10:21 [PMID: 30479775]
  3. Exp Gerontol. 2019 Nov;127:110723 [PMID: 31518665]
  4. Acta Physiol Scand. 1976 Jul;97(3):392-7 [PMID: 134623]
  5. Curr Opin Clin Nutr Metab Care. 2004 Jul;7(4):405-10 [PMID: 15192443]
  6. Diabetes. 2013 Dec;62(12):4006-8 [PMID: 24264403]
  7. J Clin Endocrinol Metab. 2003 Nov;88(11):5444-51 [PMID: 14602787]
  8. J Cachexia Sarcopenia Muscle. 2017 Apr;8(2):267-276 [PMID: 27897408]
  9. J Appl Physiol (1985). 2017 Oct 1;123(4):894-901 [PMID: 28663372]
  10. Aging Clin Exp Res. 2019 Apr;31(4):447-454 [PMID: 29992495]
  11. J Appl Physiol (1985). 1994 Sep;77(3):1122-7 [PMID: 7836113]
  12. J Clin Endocrinol Metab. 2011 Sep;96(9):2898-903 [PMID: 21778224]
  13. J Intern Med. 1990 Oct;228(4):385-92 [PMID: 2266348]
  14. Microcirculation. 2014 Nov;21(8):738-46 [PMID: 24976488]
  15. Diabetes Metab J. 2016 Apr;40(2):147-53 [PMID: 27126885]
  16. Nutrients. 2018 Mar 16;10(3): [PMID: 29547573]
  17. Eur J Endocrinol. 2018 May;178(5):523-531 [PMID: 29535167]
  18. Am J Physiol. 1999 Feb;276(2):R591-6 [PMID: 9950941]
  19. J Am Med Dir Assoc. 2013 Nov;14(11):852.e1-7 [PMID: 23896368]
  20. Diabetes Res Clin Pract. 2009 Feb;83(2):157-75 [PMID: 19135754]
  21. Am J Clin Nutr. 2007 Apr;85(4):1005-13 [PMID: 17413099]
  22. J Exerc Rehabil. 2018 Jun 30;14(3):460-465 [PMID: 30018934]
  23. J Strength Cond Res. 2012 Feb;26(2):327-34 [PMID: 22240549]
  24. Obes Rev. 2012 Dec;13 Suppl 2:105-21 [PMID: 23107264]
  25. J Clin Endocrinol Metab. 2013 Apr;98(4):1694-702 [PMID: 23463651]
  26. Biochim Biophys Acta. 2010 Feb;1797(2):143-51 [PMID: 19751701]
  27. Am J Phys Med Rehabil. 2002 Nov;81(11 Suppl):S3-16 [PMID: 12409807]
  28. Acta Physiol Scand. 2005 Oct;185(2):89-97 [PMID: 16168003]
  29. J Diabetes Investig. 2021 Apr;12(4):625-632 [PMID: 32745374]
  30. Diabetes Care. 2013 Aug;36(8):2372-9 [PMID: 23474589]
  31. Med Sci Sports Exerc. 2016 Apr;48(4):589-98 [PMID: 26587847]
  32. Nutr Metab (Lond). 2017 Mar 2;14:24 [PMID: 28270856]
  33. Diabetes Care. 2009 Nov;32 Suppl 2:S157-63 [PMID: 19875544]
  34. J Physiol. 2003 Sep 15;551(Pt 3):1049-58 [PMID: 12897182]
  35. Diabetes Care. 1994 May;17(5):382-6 [PMID: 8062604]
  36. Adv Exp Med Biol. 2017;987:213-218 [PMID: 28971460]
  37. Am J Cardiol. 2002 Sep 5;90(5A):11G-18G [PMID: 12231074]
  38. J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61 [PMID: 11739435]
  39. Diabetes Care. 2003 Nov;26(11):2977-82 [PMID: 14578226]
  40. Diabetes. 2012 Nov;61(11):2787-95 [PMID: 22751691]
  41. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21401-6 [PMID: 19966219]
  42. Horm Metab Res. 1998 Jan;30(1):37-41 [PMID: 9503037]
  43. Diabetologia. 2021 Feb;64(2):424-436 [PMID: 33258025]
  44. Appl Physiol Nutr Metab. 2007 Jun;32(3):426-33 [PMID: 17510677]
  45. Clin Hemorheol Microcirc. 2016;64(4):663-678 [PMID: 27767975]
  46. Am J Clin Nutr. 2004 Feb;79(2):303-10 [PMID: 14749238]
  47. Physiol Rep. 2015 Aug;3(8): [PMID: 26320213]
  48. Diabetes Care. 2017 Sep;40(9):1256-1263 [PMID: 28687542]
  49. Front Endocrinol (Lausanne). 2019 Nov 08;10:728 [PMID: 31787929]
  50. Sports Med. 2007;37(2):145-68 [PMID: 17241104]
  51. J Physiol. 1985 Sep;366:233-49 [PMID: 4057091]
  52. Am J Physiol Endocrinol Metab. 2000 Feb;278(2):E308-15 [PMID: 10662716]
  53. Diabetes Res Clin Pract. 2008 Mar;79(3):405-11 [PMID: 18006170]
  54. J Gerontol A Biol Sci Med Sci. 2006 May;61(5):480-7 [PMID: 16720745]
  55. Int J Obes (Lond). 2013 Dec;37(12):1560-4 [PMID: 23609936]
  56. J Steroid Biochem Mol Biol. 2019 Jul;191:105375 [PMID: 31067490]
  57. J Physiol. 2016 Apr 15;594(8):2245-57 [PMID: 25809076]
  58. Physiol Behav. 2019 Jun 1;205:15-21 [PMID: 30503849]
  59. JAMA. 2011 May 4;305(17):1790-9 [PMID: 21540423]
  60. Ross Fiziol Zh Im I M Sechenova. 2013 Mar;99(3):406-16 [PMID: 23789443]
  61. Front Physiol. 2018 Apr 18;9:402 [PMID: 29720946]
  62. Am J Physiol Endocrinol Metab. 2014 Dec 15;307(12):E1105-16 [PMID: 25352432]
  63. Diabetol Metab Syndr. 2020 Feb 11;12:14 [PMID: 32082422]
  64. Wien Med Wochenschr. 2009;159(5-6):141-7 [PMID: 19343291]
  65. J Clin Endocrinol Metab. 2000 Jul;85(7):2463-8 [PMID: 10902794]
  66. FASEB J. 2004 Apr;18(6):737-9 [PMID: 14977873]
  67. Nature. 2008 Feb 21;451(7181):1008-12 [PMID: 18288196]
  68. PLoS One. 2010 Aug 09;5(8):e12033 [PMID: 20711498]
  69. Obes Rev. 2021 Mar;22 Suppl 2:e13189 [PMID: 33543573]
  70. Climacteric. 2015;18(6):846-51 [PMID: 26524194]
  71. Front Endocrinol (Lausanne). 2019 Mar 11;10:137 [PMID: 30915034]
  72. N Engl J Med. 2001 May 3;344(18):1343-50 [PMID: 11333990]
  73. J Strength Cond Res. 2004 Nov;18(4):760-4 [PMID: 15574103]
  74. Ageing Res Rev. 2016 Jul;28:46-61 [PMID: 27112523]
  75. Med Sci Sports Exerc. 2006 Jul;38(7):1208-15 [PMID: 16826016]
  76. Clin Sci (Lond). 2005 Aug;109(2):143-59 [PMID: 16033329]
  77. J Cell Sci. 2014 Nov 15;127(Pt 22):4813-20 [PMID: 25217629]
  78. J Gerontol A Biol Sci Med Sci. 2020 Nov 13;75(12):2262-2268 [PMID: 32201887]
  79. Nutr Res. 2019 Mar;63:63-69 [PMID: 30824398]
  80. Vasc Biol. 2019 Mar 11;1(1):H1-H8 [PMID: 32923947]
  81. J Cachexia Sarcopenia Muscle. 2017 Apr;8(2):213-228 [PMID: 27897402]
  82. Diabetologia. 2016 Jan;59(1):77-86 [PMID: 26486356]
  83. Essays Biochem. 2006;42:75-88 [PMID: 17144881]
  84. BMJ. 2018 Jul 3;362:k2575 [PMID: 29970408]
  85. J Clin Endocrinol Metab. 2011 Jun;96(6):1815-26 [PMID: 21508135]
  86. Diabetes Care. 2014 May;37(5):1469-75 [PMID: 24595633]
  87. J Gerontol A Biol Sci Med Sci. 1995 Nov;50 Spec No:11-6 [PMID: 7493202]
  88. Acta Diabetol. 2009 Dec;46(4):263-78 [PMID: 19479186]
  89. Med Sci (Paris). 2005 Jan;21(1):49-54 [PMID: 15639020]
  90. Int J Sports Med. 1997 May;18(4):242-6 [PMID: 9231838]
  91. Sports Med. 1996 Nov;22(5):273-81 [PMID: 8923645]
  92. N Engl J Med. 2004 Feb 12;350(7):664-71 [PMID: 14960743]
  93. Scand J Med Sci Sports. 2019 Mar;29(3):360-368 [PMID: 30480353]
  94. Asia Pac J Clin Nutr. 1999 Jun;8(2):129-35 [PMID: 24393797]
  95. Metabolism. 2013 May;62(5):725-33 [PMID: 23318050]
  96. Med Sci Sports Exerc. 2018 Jan;50(1):36-45 [PMID: 28846563]
  97. Med Sci Sports Exerc. 2010 Nov;42(11):1973-80 [PMID: 20351587]
  98. Diabetes. 1997 Nov;46(11):1822-8 [PMID: 9356032]
  99. Obesity (Silver Spring). 2008 May;16(5):1085-93 [PMID: 18356851]
  100. Int J Sports Med. 2020 Jun;41(6):349-359 [PMID: 32162291]
  101. J Clin Densitom. 2015 Oct-Dec;18(4):488-92 [PMID: 26071171]
  102. Clin Exp Pharmacol Physiol. 2010 Mar;37(3):378-84 [PMID: 19650790]
  103. Am J Physiol Regul Integr Comp Physiol. 2011 Sep;301(3):R783-90 [PMID: 21677269]
  104. Diabetes. 2004 Feb;53(2):294-305 [PMID: 14747278]
  105. J Physiol. 2016 Apr 15;594(8):2307-21 [PMID: 25645978]
  106. Diabetes. 1983 Oct;32(10):965-9 [PMID: 6352382]
  107. J Endocrinol Invest. 2002 Jun;25(6):520-5 [PMID: 12109623]
  108. PLoS One. 2014 Aug 14;9(8):e103044 [PMID: 25121500]
  109. Am J Physiol Heart Circ Physiol. 2016 Feb 1;310(3):H337-50 [PMID: 26408541]
  110. Osteoporos Int. 2012 Jul;23(7):1839-48 [PMID: 22290243]
  111. Med Sci Sports Exerc. 1984 Dec;16(6):539-43 [PMID: 6392812]
  112. Front Endocrinol (Lausanne). 2014 Nov 13;5:195 [PMID: 25431568]
  113. Exp Physiol. 2014 Jun;99(6):894-908 [PMID: 24706192]
  114. J Appl Physiol (1985). 1995 Mar;78(3):823-9 [PMID: 7775325]
  115. J Clin Invest. 1987 Aug;80(2):415-24 [PMID: 3301899]
  116. Prog Mol Biol Transl Sci. 2014;121:133-63 [PMID: 24373237]
  117. Diabetes. 2015 Oct;64(10):3386-95 [PMID: 26068543]
  118. IUBMB Life. 2009 Jan;61(1):47-55 [PMID: 18839419]
  119. Exp Gerontol. 2017 Sep;95:34-38 [PMID: 28502778]
  120. Nature. 2019 Dec;576(7785):51-60 [PMID: 31802013]
  121. Diabetes. 2017 Jun;66(6):1501-1510 [PMID: 28292969]
  122. Metab Syndr Relat Disord. 2012 Jun;10(3):167-74 [PMID: 22283635]
  123. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):35-8 [PMID: 6693333]
  124. Int J Obes (Lond). 2020 Jun;44(6):1243-1253 [PMID: 32099104]
  125. Exp Gerontol. 2004 Jan;39(1):133-8 [PMID: 14724073]
  126. Exerc Sport Sci Rev. 2015 Jul;43(3):117-24 [PMID: 25688763]
  127. Exp Physiol. 2020 Dec;105(12):2007-2021 [PMID: 33002256]
  128. BMJ Open Sport Exerc Med. 2017 Mar 1;2(1):e000143 [PMID: 28879026]

Word Cloud

Created with Highcharts 10.0.0muscleRTSMglucosehomeostasishypertrophySkeletalshownmetabolichealthresistancetrainingpopulationssensitivitymechanisticmasscurrentmitochondrialtissuerepetitivelyplaymajorrolewhole-bodyoverallHencesuggestedfavorabledifferentyounghealthytype2diabeticT2DindividualscontributeimprovedincludinginsulinsurrogatesmultiplestudiesuniversalunderstandingexplanationcurrentlylackingFurthermoreexercised-improvedquantitativechangeshypothesizedconcurrentnecessarilycausallyassociatedstraightforwardfocusexerciseinterventionsnarrativereviewaimshighlightlevelevidenceimpactwellvariousmechanismslikelyexplaineffectsinsightsprovidestrengthenedrationalefutureresearchassessingalternativestrategiesclassicalmodalitieslow-loadhighrepetitionhigh-volumecircuit-stylemetabolicallyimpairedExercisingInsulinSensitivity-MechanisticRelationshipQuantitativeChangesMuscleMass?insulincapillarizationactivitybiogenesisquality

Similar Articles

Cited By