Determination of Aortic Characteristic Impedance and Total Arterial Compliance From Regional Pulse Wave Velocities Using Machine Learning: An Study.

Vasiliki Bikia, Georgios Rovas, Stamatia Pagoulatou, Nikolaos Stergiopulos
Author Information
  1. Vasiliki Bikia: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Lausanne, Switzerland.
  2. Georgios Rovas: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Lausanne, Switzerland.
  3. Stamatia Pagoulatou: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Lausanne, Switzerland.
  4. Nikolaos Stergiopulos: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Lausanne, Switzerland.

Abstract

assessment of aortic characteristic impedance (Z ) and total arterial compliance (C ) has been hampered by the need for either invasive or inconvenient and expensive methods to access simultaneous recordings of aortic pressure and flow, wall thickness, and cross-sectional area. In contrast, regional pulse wave velocity (PWV) measurements are non-invasive and clinically available. In this study, we present a non-invasive method for estimating Z and C using cuff pressure, carotid-femoral PWV (cfPWV), and carotid-radial PWV (crPWV). Regression analysis is employed for both Z and C . The regressors are trained and tested using a pool of virtual subjects ( = 3,818) generated from a previously validated model. Predictions achieved an accuracy of 7.40%, = 0.90, and 6.26%, = 0.95, for Z , and C , respectively. The proposed approach constitutes a step forward to non-invasive screening of elastic vascular properties in humans by exploiting easily obtained measurements. This study could introduce a valuable tool for assessing arterial stiffness reducing the cost and the complexity of the required measuring techniques. Further clinical studies are required to validate the method .

Keywords

References

  1. Hypertension. 2007 Jul;50(1):172-80 [PMID: 17515449]
  2. Arterioscler Thromb Vasc Biol. 2001 Dec;21(12):2046-50 [PMID: 11742883]
  3. Hypertension. 1987 Aug;10(2):133-9 [PMID: 3301662]
  4. Hypertension. 2007 Jun;49(6):1248-55 [PMID: 17404183]
  5. Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H614-20 [PMID: 12689857]
  6. J Am Coll Cardiol. 2010 Mar 30;55(13):1318-27 [PMID: 20338492]
  7. Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H320-30 [PMID: 19966060]
  8. J Clin Invest. 1986 Dec;78(6):1462-71 [PMID: 3782467]
  9. Eur Heart J. 1984 Jun;5(6):447-55 [PMID: 6745286]
  10. Rev Port Cardiol. 2009 Feb;28(2):155-71 [PMID: 19438151]
  11. Lancet. 1986 Feb 8;1(8476):307-10 [PMID: 2868172]
  12. Am J Physiol Heart Circ Physiol. 2019 Nov 1;317(5):H1125-H1133 [PMID: 31538801]
  13. J Hypertens. 2017 Aug;35(8):1577-1585 [PMID: 28267041]
  14. Hypertension. 2012 Aug;60(2):556-62 [PMID: 22733468]
  15. Heart. 2018 Jul;104(14):1156-1164 [PMID: 29352006]
  16. Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H208-22 [PMID: 19429832]
  17. Blood Press Monit. 2012 Jun;17(3):128-31 [PMID: 22561735]
  18. Ann Biomed Eng. 1994 Jul-Aug;22(4):392-7 [PMID: 7998684]
  19. QJM. 2002 Feb;95(2):67-74 [PMID: 11861952]
  20. Circulation. 2006 Mar 7;113(9):1213-25 [PMID: 16476843]
  21. J Hypertens. 2020 Dec;38(12):2451-2458 [PMID: 32740405]
  22. Hypertension. 2001 Oct;38(4):922-6 [PMID: 11641310]
  23. Int J Hypertens. 2017;2017:6265823 [PMID: 29085674]
  24. Cardiovasc Res. 1992 Mar;26(3):265-72 [PMID: 1423423]
  25. J Am Coll Cardiol. 2011 Sep 13;58(12):1262-70 [PMID: 21903061]
  26. J Am Soc Echocardiogr. 2008 Feb;21(2):123-8 [PMID: 17686611]
  27. Am J Physiol. 1999 Feb;276(2):H424-8 [PMID: 9950841]
  28. Ann Biomed Eng. 2012 Dec;40(12):2619-26 [PMID: 22648578]
  29. Am J Cardiol. 2012 Oct 15;110(8):1189-94 [PMID: 22770936]
  30. Atherosclerosis. 2010 Apr;209(2):474-80 [PMID: 19896128]
  31. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2857-60 [PMID: 21095972]
  32. IEEE Trans Biomed Eng. 1988 Jan;35(1):62-8 [PMID: 3338813]
  33. Med Biol Eng Comput. 1981 Sep;19(5):565-8 [PMID: 7334864]
  34. Aust N Z J Med. 1976;6 suppl 2:49-59 [PMID: 1067827]
  35. J Hypertens. 2017 Jan;35(1):69-75 [PMID: 27763994]
  36. Circulation. 1981 Jun;63(6):1305-14 [PMID: 7226476]
  37. Proc Inst Mech Eng H. 2008 May;222(4):417-28 [PMID: 18595354]
  38. J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60 [PMID: 16256881]
  39. Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1558-67 [PMID: 23604712]
  40. PLoS Comput Biol. 2019 Aug 15;15(8):e1007259 [PMID: 31415554]
  41. Am J Physiol. 1995 Apr;268(4 Pt 2):H1540-8 [PMID: 7733355]
  42. J Appl Physiol (1985). 2006 Aug;101(2):598-608 [PMID: 16849813]
  43. IEEE Trans Biomed Eng. 1986 Aug;33(8):783-5 [PMID: 3744394]
  44. Circ Res. 1977 May;40(5):451-8 [PMID: 856482]
  45. J Hum Hypertens. 2012 Jan;26(1):28-34 [PMID: 21228826]
  46. Sci Rep. 2020 Sep 14;10(1):15015 [PMID: 32929108]
  47. Heart. 2006 Jan;92(1):40-3 [PMID: 16365349]
  48. J Am Coll Cardiol. 1992 Oct;20(4):952-63 [PMID: 1527307]
  49. AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:152-161 [PMID: 32477634]
  50. Hypertension. 2001 May;37(5):1236-41 [PMID: 11358934]
  51. JACC Cardiovasc Imaging. 2008 Mar;1(2):200-9 [PMID: 19356429]
  52. Circulation. 1978 Sep;58(3 Pt 1):460-5 [PMID: 679436]
  53. Am J Hypertens. 1998 Mar;11(3 Pt 1):293-301 [PMID: 9544869]
  54. Am J Cardiol. 1985 Apr 15;55(9):1179-84 [PMID: 3984897]
  55. Int J Numer Method Biomed Eng. 2020 Mar;36(3):e3303 [PMID: 31886948]
  56. Ann R Coll Surg Engl. 2004 Sep;86(5):334-8 [PMID: 15333167]
  57. J Hypertens. 2015 Feb;33(2):330-8 [PMID: 25380150]
  58. Circulation. 1980 Jul;62(1):105-16 [PMID: 7379273]
  59. IEEE J Biomed Health Inform. 2020 Jul;24(7):1968-1981 [PMID: 31796418]
  60. Int J Cardiol. 2010 Jan 21;138(2):112-8 [PMID: 19473713]
  61. Hypertension. 2001 Dec 1;38(6):1433-9 [PMID: 11751731]
  62. J Hypertens. 2016 Jul;34(7):1279-89 [PMID: 27088638]
  63. Anaesthesia. 2007 Aug;62(8):760-8 [PMID: 17635422]
  64. Eur Heart J. 2006 Nov;27(21):2588-605 [PMID: 17000623]
  65. J Hypertens Suppl. 1988 Dec;6(4):S110-1 [PMID: 2977152]
  66. Front Artif Intell. 2021 Apr 14;4:579541 [PMID: 33937742]
  67. Circulation. 2010 Feb 2;121(4):505-11 [PMID: 20083680]
  68. J Biomech. 2004 Oct;37(10):1615-22 [PMID: 15336937]
  69. Sci Rep. 2018 Jan 17;8(1):1014 [PMID: 29343797]
  70. Am J Physiol. 1986 Sep;251(3 Pt 2):H588-600 [PMID: 3752271]
  71. Ann Biomed Eng. 1999 Jul-Aug;27(4):480-5 [PMID: 10468232]

Word Cloud

Created with Highcharts 10.0.0ZCnon-invasivearterialPWV=aorticpressuremeasurementsstudymethodusing0vascularstiffnessrequiredassessmentcharacteristicimpedancetotalcompliancehamperedneedeitherinvasiveinconvenientexpensivemethodsaccesssimultaneousrecordingsflowwallthicknesscross-sectionalareacontrastregionalpulsewavevelocityclinicallyavailablepresentestimatingcuffcarotid-femoralcfPWVcarotid-radialcrPWVRegressionanalysisemployedregressorstrainedtestedpoolvirtualsubjects3818generatedpreviouslyvalidatedmodelPredictionsachievedaccuracy740%90626%95respectivelyproposedapproachconstitutesstepforwardscreeningelasticpropertieshumansexploitingeasilyobtainedintroducevaluabletoolassessingreducingcostcomplexitymeasuringtechniquesclinicalstudiesvalidateDeterminationAorticCharacteristicImpedanceTotalArterialComplianceRegionalPulseWaveVelocitiesUsingMachineLearning:Studyaortamachinelearningmonitoringaging

Similar Articles

Cited By