Cross-Validation Comparison of COVID-19 Forecast Models.

Mintodê Nicodème Atchadé, Yves Morel Sokadjo, Aliou Djibril Moussa, Svetlana Vladimirovna Kurisheva, Marina Vladimirovna Bochenina
Author Information
  1. Mintodê Nicodème Atchadé: National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Republic of Benin. ORCID
  2. Yves Morel Sokadjo: University of Abomey-Calavi/International Chair in Mathematical Physics and Applications (ICMPA: UNESCO-Chair), Abomey-Calavi , Republic of Benin. ORCID
  3. Aliou Djibril Moussa: National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Republic of Benin.
  4. Svetlana Vladimirovna Kurisheva: Department of Statistics and Econometrics, Saint-Petersburg State University of Economics, Saint-Petersburg , Russia.
  5. Marina Vladimirovna Bochenina: Department of Statistics and Econometrics, Saint-Petersburg State University of Economics, Saint-Petersburg , Russia. ORCID

Abstract

Many papers have proposed forecasting models and some are accurate and others are not. Due to the debatable quality of collected data about COVID-19, this study aims to compare univariate time series models with cross-validation and different forecast periods to propose the best one. We used the data titled "Coronavirus Pandemic (COVID-19)" from "'Our World in Data" about cases for the period of 31 December 2019 to 21 November 2020. The Mean Absolute Percentage Error (MAPE) is computed per model to make the choice of the best fit. Among the univariate models, Error Trend Season (ETS), Exponential smoothing with multiplicative error-trend, and ARIMA; we got that the best one is ETS with additive error-trend and no season. The findings revealed that with the ETS model, we need at least 100 days to have good forecasts with a MAPE threshold of 5%.

Keywords

References

  1. Asia Pac J Public Health. 2020 Nov;32(8):458-460 [PMID: 32865005]
  2. J Clin Med. 2020 Mar 13;9(3): [PMID: 32183172]
  3. JAMA. 2020 May 19;323(19):1893-1894 [PMID: 32297897]
  4. J Clin Med. 2020 Feb 22;9(2): [PMID: 32098289]
  5. J Microbiol Immunol Infect. 2020 Jun;53(3):454-458 [PMID: 32205091]
  6. J Med Syst. 2020 Oct 25;44(12):202 [PMID: 33099706]
  7. Euro Surveill. 2020 Jan;25(4): [PMID: 32019669]
  8. SN Comput Sci. 2020;1(6):363 [PMID: 33163975]
  9. SN Comput Sci. 2021;2(1):42 [PMID: 33490971]
  10. MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):411-415 [PMID: 32271722]
  11. Transp Res Interdiscip Perspect. 2020 Nov;8:100213 [PMID: 34173471]
  12. SN Comput Sci. 2020;1(4):206 [PMID: 33063049]
  13. PLoS One. 2020 Mar 31;15(3):e0231236 [PMID: 32231392]
  14. J Med Syst. 2020 Mar 18;44(5):93 [PMID: 32189081]
  15. Science. 2020 May 15;368(6492):742-746 [PMID: 32269067]
  16. Data Brief. 2020 Feb 26;29:105340 [PMID: 32181302]
  17. PLoS One. 2020 Mar 31;15(3):e0230405 [PMID: 32231374]
  18. SN Comput Sci. 2020;1(4):197 [PMID: 33063048]
  19. J Clin Med. 2020 Mar 02;9(3): [PMID: 32131537]
  20. BMJ. 2020 Apr 7;369:m1328 [PMID: 32265220]
  21. Ann Intern Med. 2020 May 5;172(9):577-582 [PMID: 32150748]
  22. J Clin Med. 2020 Feb 17;9(2): [PMID: 32079150]
  23. Neural Comput Appl. 2021 Feb 4;:1-11 [PMID: 33564213]
  24. Mil Med Res. 2020 Feb 6;7(1):4 [PMID: 32029004]
  25. J Med Syst. 2020 Aug 13;44(9):170 [PMID: 32794042]
  26. SN Comput Sci. 2021;2(1):11 [PMID: 33263111]
  27. BMC Med. 2021 Jan 28;19(1):32 [PMID: 33504336]

Word Cloud

Created with Highcharts 10.0.0COVID-19modelsbestETSdataunivariateseriesoneErrorMAPEmodelerror-trendForecastManypapersproposedforecastingaccurateothersDuedebatablequalitycollectedstudyaimscomparetimecross-validationdifferentforecastperiodsproposeusedtitled"CoronavirusPandemic""'OurWorldData"casesperiod31December201921November2020MeanAbsolutePercentagecomputedpermakechoicefitAmongTrendSeasonExponentialsmoothingmultiplicativeARIMAgotadditiveseasonfindingsrevealedneedleast100daysgoodforecaststhreshold5%Cross-ValidationComparisonModelsCross-validationStatisticalmodelingTime

Similar Articles

Cited By