High-throughput PBTK models for to extrapolation.

Miyuki Breen, Caroline L Ring, Anna Kreutz, Michael-Rock Goldsmith, John F Wambaugh
Author Information
  1. Miyuki Breen: Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
  2. Caroline L Ring: Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
  3. Anna Kreutz: Oak Ridge Institute for Science and Education (ORISE) fellow at the Center for Computational Toxicology and Exposure, Office of Research and Development, Research Triangle Park, NC, USA.
  4. Michael-Rock Goldsmith: Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
  5. John F Wambaugh: Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.

Abstract

INTRODUCTION: Toxicity data are unavailable for many thousands of chemicals in commerce and the environment. Therefore, risk assessors need to rapidly screen these chemicals for potential risk to public health. High-throughput screening (HTS) for bioactivity, when used with high-throughput toxicokinetic (HTTK) data and models, allows characterization of these thousands of chemicals.
AREAS COVERED: This review covers generic physiologically based toxicokinetic (PBTK) models and high-throughput PBTK modeling for extrapolation (IVIVE) of HTS data. We focus on 'httk', a public, open-source set of computational modeling tools and toxicokinetic (TK) data.
EXPERT OPINION: HTTK benefits chemical risk assessors with its ability to support rapid chemical screening/prioritization, perform IVIVE, and provide provisional TK modeling for large numbers of chemicals using only limited chemical-specific data. Although generic TK model design can increase prediction uncertainty, these models provide offsetting benefits by increasing model implementation accuracy. Also, public distribution of the models and data enhances reproducibility. For the httk package, the modular and open-source design can enable the tool to be used and continuously improved by a broad user community in support of the critical need for high-throughput chemical prioritization and rapid dose estimation to facilitate rapid hazard assessments.

Keywords

References

  1. Chem Res Toxicol. 2019 Jun 17;32(6):1103-1114 [PMID: 31012305]
  2. Toxicol Sci. 2018 May 1;163(1):152-169 [PMID: 29385628]
  3. J Pharm Sci. 2008 Oct;97(10):4586-95 [PMID: 18300299]
  4. Clin Pharmacokinet. 2006;45(10):1013-34 [PMID: 16984214]
  5. Fundam Appl Toxicol. 1996 May;31(1):19-28 [PMID: 8998950]
  6. Regul Toxicol Pharmacol. 2020 Aug;115:104691 [PMID: 32502513]
  7. Drug Metab Dispos. 2015 Nov;43(11):1823-37 [PMID: 26296709]
  8. Risk Anal. 2007 Dec;27(6):1535-51 [PMID: 18093051]
  9. Toxicol Sci. 2019 Dec 1;172(2):235-251 [PMID: 31532498]
  10. Toxicol In Vitro. 2014 Mar;28(2):164-70 [PMID: 24216301]
  11. Toxicol Appl Pharmacol. 2010 Dec 15;249(3):197-207 [PMID: 20869379]
  12. Teratology. 1994 Feb;49(2):90-103 [PMID: 8016750]
  13. Chem Res Toxicol. 2012 Feb 20;25(2):436-45 [PMID: 22242923]
  14. Risk Anal. 2004 Dec;24(6):1697-717 [PMID: 15660623]
  15. Toxicol Sci. 2015 Sep;147(1):55-67 [PMID: 26085347]
  16. Toxicol Sci. 2007 Jan;95(1):5-12 [PMID: 16963515]
  17. Toxicol Lett. 1995 Sep;79(1-3):35-44 [PMID: 7570672]
  18. Toxicology. 2012 May 16;295(1-3):47-55 [PMID: 22387982]
  19. Ann N Y Acad Sci. 1999;895:317-37 [PMID: 10676425]
  20. PLoS One. 2019 May 28;14(5):e0217564 [PMID: 31136631]
  21. Drug Metab Dispos. 2010 Jul;38(7):1094-104 [PMID: 20368327]
  22. Chem Res Toxicol. 2018 May 21;31(5):287-290 [PMID: 29600706]
  23. Comput Toxicol. 2021 Feb 1;17:100142 [PMID: 34017929]
  24. Clin Pharmacol Ther. 2012 Jul;92(1):50-61 [PMID: 22644330]
  25. J Expo Anal Environ Epidemiol. 2004 Nov;14(6):457-65 [PMID: 15367927]
  26. Environ Health Perspect. 2009 Aug;117(8):A348-53 [PMID: 19672388]
  27. Biopharm Drug Dispos. 2012 Mar;33(2):85-98 [PMID: 22228214]
  28. Toxicol Appl Pharmacol. 1997 Jun;144(2):340-7 [PMID: 9194418]
  29. CPT Pharmacometrics Syst Pharmacol. 2019 Apr;8(4):205-210 [PMID: 30697975]
  30. Toxicol Sci. 2010 Oct;117(2):348-58 [PMID: 20639261]
  31. Toxicol Sci. 2012 Mar;126(1):5-15 [PMID: 22045031]
  32. Toxicol In Vitro. 2008 Mar;22(2):457-67 [PMID: 17981004]
  33. Int J Mol Sci. 2011;12(11):7469-80 [PMID: 22174611]
  34. Nat Rev Drug Discov. 2007 Feb;6(2):140-8 [PMID: 17268485]
  35. J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):299-313 [PMID: 20574904]
  36. Environ Int. 2016 Mar;88:269-280 [PMID: 26812473]
  37. Environ Toxicol Chem. 2010 Mar;29(3):730-41 [PMID: 20821501]
  38. Risk Anal. 1999 Aug;19(4):547-58 [PMID: 10765421]
  39. J Am Stat Assoc. 1949 Sep;44(247):335-41 [PMID: 18139350]
  40. Toxicol Sci. 2018 Apr 1;162(2):341-348 [PMID: 29385573]
  41. Ann Occup Hyg. 2011 Oct;55(8):841-64 [PMID: 21998005]
  42. Environ Health Perspect. 2009 May;117(5):685-95 [PMID: 19479008]
  43. J Cheminform. 2017 Nov 28;9(1):61 [PMID: 29185060]
  44. Front Physiol. 2011 Feb 24;2:4 [PMID: 21483730]
  45. Inhal Toxicol. 2009 May;21(6):552-82 [PMID: 19519155]
  46. Toxicol In Vitro. 2013 Aug;27(5):1570-7 [PMID: 22771339]
  47. Toxicol In Vitro. 2020 Sep;67:104916 [PMID: 32553663]
  48. AAPS J. 2009 Jun;11(2):323-34 [PMID: 19430911]
  49. Sci Data. 2020 Apr 20;7(1):122 [PMID: 32313097]
  50. Int J Environ Res Public Health. 2020 Mar 23;17(6): [PMID: 32210027]
  51. Drug Metab Dispos. 2002 Aug;30(8):892-6 [PMID: 12124306]
  52. J Pharmacokinet Pharmacodyn. 2019 Apr;46(2):111-116 [PMID: 31004315]
  53. Chem Res Toxicol. 2020 Jul 20;33(7):1736-1751 [PMID: 32500706]
  54. AAPS J. 2020 Oct 8;22(6):128 [PMID: 33033903]
  55. J Pharmacokinet Pharmacodyn. 2017 Dec;44(6):549-565 [PMID: 29032447]
  56. Regul Toxicol Pharmacol. 2008 Apr;50(3):400-11 [PMID: 18331772]
  57. PLoS Comput Biol. 2016 Feb 12;12(2):e1004495 [PMID: 26871706]
  58. Toxicol Sci. 2001 Oct;63(2):160-72 [PMID: 11568359]
  59. Toxicol Sci. 2014 Nov;142(1):210-24 [PMID: 25145659]
  60. J Expo Sci Environ Epidemiol. 2019 Jan;29(1):11-20 [PMID: 30116055]
  61. Curr Top Med Chem. 2008;8(18):1555-72 [PMID: 19075767]
  62. Toxicol Sci. 2015 Nov;148(1):121-36 [PMID: 26251325]
  63. Toxicol Sci. 2020 Jan 1;173(1):202-225 [PMID: 31532525]
  64. J Cheminform. 2018 Mar 8;10(1):10 [PMID: 29520515]
  65. Am Ind Hyg Assoc J. 1996 Jan;57(1):23-32 [PMID: 8588550]
  66. Environ Sci Technol. 2014 Aug 19;48(16):9770-9 [PMID: 25014875]
  67. Environ Health Perspect. 1998 Dec;106 Suppl 6:1453-60 [PMID: 9860904]
  68. Clin Pharmacokinet. 2019 Jun;58(6):727-746 [PMID: 30729397]
  69. Expert Opin Drug Metab Toxicol. 2009 Feb;5(2):211-23 [PMID: 19199378]
  70. J Expo Sci Environ Epidemiol. 2007 Nov;17(7):591-603 [PMID: 17108893]
  71. Bioinformatics. 2009 Jun 1;25(11):1453-4 [PMID: 19304877]
  72. Environ Int. 2017 Sep;106:105-118 [PMID: 28628784]
  73. Environ Sci Technol. 2020 Jan 21;54(2):1120-1127 [PMID: 31852189]
  74. Risk Anal. 1994 Oct;14(5):707-12 [PMID: 7800861]
  75. Sci Total Environ. 2012 Jan 1;414:159-66 [PMID: 22104386]
  76. Toxicol Sci. 2012 Jan;125(1):157-74 [PMID: 21948869]
  77. Drug Metab Dispos. 2006 Jan;34(1):94-101 [PMID: 16221756]
  78. Environ Health Perspect. 2018 Sep;126(9):97001 [PMID: 30192161]
  79. Comput Toxicol. 2020 Nov 1;16: [PMID: 34124416]
  80. Regul Toxicol Pharmacol. 2014 Feb;68(1):119-39 [PMID: 24287156]
  81. Toxicol Sci. 2005 May;85(1):476-90 [PMID: 15716482]
  82. J Expo Sci Environ Epidemiol. 2008 Nov;18(6):608-15 [PMID: 18414515]
  83. Toxicol In Vitro. 2018 Mar;47:213-227 [PMID: 29203341]
  84. Arch Toxicol. 2012 Mar;86(3):393-403 [PMID: 22089525]
  85. J Expo Sci Environ Epidemiol. 2020 Sep;30(5):866-877 [PMID: 32546826]
  86. J Stat Softw. 2017 Jul 17;79(4):1-26 [PMID: 30220889]
  87. Environ Sci Technol. 2017 Sep 19;51(18):10786-10796 [PMID: 28809115]
  88. Environ Health Perspect. 2015 Oct;123(10):919-27 [PMID: 25859901]
  89. Toxicol Appl Pharmacol. 2011 Nov 15;257(1):122-36 [PMID: 21920375]
  90. Drug Metab Dispos. 2012 May;40(5):1007-17 [PMID: 22344703]
  91. Toxicology. 2015 Jun 5;332:30-40 [PMID: 23978460]
  92. Environ Toxicol Chem. 2003 Jan;22(1):26-34 [PMID: 12503743]
  93. Drug Metab Rev. 2009;41(3):391-407 [PMID: 19601719]
  94. Fundam Appl Toxicol. 1996 May;31(1):83-94 [PMID: 8998957]
  95. Sci Total Environ. 2017 Feb 1;578:1-15 [PMID: 27842969]
  96. Chem Res Toxicol. 2017 May 15;30(5):1197-1208 [PMID: 28316234]
  97. Toxicol Sci. 2007 Oct;99(2):395-402 [PMID: 17483121]
  98. J Chem Inf Model. 2016 Nov 28;56(11):2243-2252 [PMID: 27684444]
  99. J Appl Toxicol. 2007 May-Jun;27(3):218-37 [PMID: 17299829]
  100. Clin Pharmacol Ther. 1975 Oct;18(4):377-90 [PMID: 1164821]
  101. Toxicol Sci. 2013 Apr;132(2):327-46 [PMID: 23358191]
  102. Toxicology. 2015 Jun 5;332:94-101 [PMID: 24907440]
  103. Toxicol Appl Pharmacol. 2019 Oct 1;380:114695 [PMID: 31394159]
  104. Nat Protoc. 2007;2(9):2111-9 [PMID: 17853866]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

Animals
Computer Simulation
High-Throughput Screening Assays
Humans
Models, Biological
Reproducibility of Results
Risk Assessment
Toxicokinetics

Word Cloud

Created with Highcharts 10.0.0datamodelschemicalshigh-throughputtoxicokineticmodelingriskpublicPBTKextrapolationtoolsTKchemicalrapidthousandsassessorsneedHigh-throughputHTSusedHTTKgenericphysiologicallybasedIVIVEopen-sourcebenefitssupportprovidemodeldesigncantoxicokineticsINTRODUCTION:ToxicityunavailablemanycommerceenvironmentThereforerapidlyscreenpotentialhealthscreeningbioactivityallowscharacterizationAREASCOVERED:reviewcoversfocus'httk'setcomputationalEXPERTOPINION:abilityscreening/prioritizationperformprovisionallargenumbersusinglimitedchemical-specificAlthoughincreasepredictionuncertaintyoffsettingincreasingimplementationaccuracyAlsodistributionenhancesreproducibilityhttkpackagemodularenabletoolcontinuouslyimprovedbroadusercommunitycriticalprioritizationdoseestimationfacilitatehazardassessmentsGenericvitrovivosoftwareopensourcephysiologically-based

Similar Articles

Cited By