A Novel Methodology Using Dexamethasone to Induce Neuronal Differentiation in the CNS-Derived Catecholaminergic CAD Cells.

Ekkaphot Khongkla, Kwanchanok Uppakara, Nittaya Boonmuen, Kanit Bhukhai, Witchuda Saengsawang
Author Information
  1. Ekkaphot Khongkla: Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Rd. Payathai, Ratchathewi district, Bangkok, 10400, Thailand.
  2. Kwanchanok Uppakara: Toxicology Graduate Program, Faculty of Sciene, Mahidol University, Bangkok, Thailand.
  3. Nittaya Boonmuen: Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Rd. Payathai, Ratchathewi district, Bangkok, 10400, Thailand.
  4. Kanit Bhukhai: Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Rd. Payathai, Ratchathewi district, Bangkok, 10400, Thailand.
  5. Witchuda Saengsawang: Department of Physiology, Faculty of Science, Mahidol University, 272 Rama 6 Rd. Payathai, Ratchathewi district, Bangkok, 10400, Thailand. witchudasaeng@gmail.com. ORCID

Abstract

The Cath.a-differentiated (CAD) cell line is a central nervous system-derived catecholaminergic cell line originating from tyrosine hydroxylase (TH)-producing neurons located around the locus coeruleus area of the mouse brain. CAD cells have been used as an in vitro model for cellular and molecular studies due to their ability to differentiate under serum-free media conditions. However, the lack of serum-derived survival factors, limits the longevity for differentiated CAD cells to be maintained in healthy conditions; thereby, limiting their use in long-term culture studies. Here, we present a novel differentiation method that utilizes dexamethasone (Dex), a synthetic glucocorticoid receptor agonist. Specifically, we discovered that the addition of 100 µM of Dex into the 1% fetal bovine serum (FBS)-supplemented media effectively induced neuronal differentiation of CAD cells, as characterized by neurite formation and elongation. Dex-differentiated CAD cells exited the cell cycle, stopped proliferating, extended the neurites, and expressed neuronal markers. These effects were dependent on the glucocorticoid receptors (GR) as they were abolished by GR knockdown. Importantly, Dex-differentiated CAD cells showed longer survival duration than serum-free differentiated CAD cells. In addition, RNA-sequencing and qPCR data demonstrate that several genes involved in proliferation, neuronal differentiation, and survival pathways were differentially expressed in the Dex-differentiated cells. This is the first study to reveal Dex as a novel differentiation methodology used to generate postmitotic neuronal CAD cells, which may be utilized as an in vitro neuronal model for cellular and molecular neurobiology research.

Keywords

References

  1. Anacker C, Cattaneo A, Luoni A et al (2013) Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology 38:872–883. https://doi.org/10.1038/npp.2012.253 [DOI: 10.1038/npp.2012.253]
  2. Androutsellis-Theotokis A, Chrousos GP, McKay RD et al (2013) Expression profiles of the nuclear receptors and their transcriptional coregulators during differentiation of neural stem cells. Horm Metab Res 45:159–168. https://doi.org/10.1055/s-0032-1321789 [DOI: 10.1055/s-0032-1321789]
  3. Arboleda G, Huang T-J, Waters C et al (2007) Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase–Akt pathway is inhibited by C2-ceramide in CAD cells. Eur J Neurosci 25:3030–3038. https://doi.org/10.1111/j.1460-9568.2007.05557.x [DOI: 10.1111/j.1460-9568.2007.05557.x]
  4. Bali U, Phillips T, Hunt H, Unitt J (2016) FKBP5 mRNA expression is a biomarker for GR antagonism. J Clin Endocrinol Metab 101:4305–4312. https://doi.org/10.1210/jc.2016-1624 [DOI: 10.1210/jc.2016-1624]
  5. Baulieu EE (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23:963–987. https://doi.org/10.1016/S0306-4530(98)00071-7 [DOI: 10.1016/S0306-4530(98)00071-7]
  6. Bilodeau ML, Ji M, Paris M, Andrisani OM (2005) Adenosine signaling promotes neuronal, catecholaminergic differentiation of primary neural crest cells and CNS-derived CAD cells. Mol Cell Neurosci 29:394–404. https://doi.org/10.1016/j.mcn.2005.03.006 [DOI: 10.1016/j.mcn.2005.03.006]
  7. Bose R, Moors M, Tofighi R et al (2010) Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death Dis 1:e92. https://doi.org/10.1038/cddis.2010.60 [DOI: 10.1038/cddis.2010.60]
  8. Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76:514–517 [DOI: 10.1073/pnas.76.1.514]
  9. Canet G, Chevallier N, Zussy C et al (2018) Central role of glucocorticoid receptors in Alzheimer’s disease and depression. Front Neurosci. https://doi.org/10.3389/fnins.2018.00739 [DOI: 10.3389/fnins.2018.00739]
  10. Chen C-W, Liu C-S, Chiu I-M et al (2010) The signals of FGFs on the neurogenesis of embryonic stem cells. J Biomed Sci 17:33. https://doi.org/10.1186/1423-0127-17-33 [DOI: 10.1186/1423-0127-17-33]
  11. Chesta ME, Carbajal A, Arce CA, Bisig CG (2014) Serum-induced neurite retraction in CAD cells—involvement of an ATP-actin retractile system and the lack of microtubule-associated proteins. FEBS J 281:4767–4778. https://doi.org/10.1111/febs.12967 [DOI: 10.1111/febs.12967]
  12. Cortés-Canteli M, Pignatelli M, Santos A, Perez-Castillo A (2002) CCAAT/Enhancer-binding protein β plays a regulatory role in differentiation and apoptosis of neuroblastoma cells. J Biol Chem 277:5460–5467. https://doi.org/10.1074/jbc.M108761200 [DOI: 10.1074/jbc.M108761200]
  13. Delmas E, Jah N, Pirou C et al (2016) FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities. Cell Death Dis 7:e2079–e2079. https://doi.org/10.1038/cddis.2016.2 [DOI: 10.1038/cddis.2016.2]
  14. Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. STEM CELLS 24:1487–1495. https://doi.org/10.1634/stemcells.2005-0415 [DOI: 10.1634/stemcells.2005-0415]
  15. Desmet SJ, Bougarne N, Van Moortel L et al (2017) Compound A influences gene regulation of the dexamethasone-activated glucocorticoid receptor by alternative cofactor recruitment. Sci Rep 7:8063. https://doi.org/10.1038/s41598-017-07941-y [DOI: 10.1038/s41598-017-07941-y]
  16. Eves EM, Boise LH, Thompson CB et al (1996) Apoptosis induced by differentiation or serum deprivation in an immortalized central nervous system neuronal cell line. J Neurochem 67:1908–1920. https://doi.org/10.1046/j.1471-4159.1996.67051908.x [DOI: 10.1046/j.1471-4159.1996.67051908.x]
  17. Fitzsimons CP, van Hooijdonk LWA, Schouten M et al (2013) Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 18:993–1005. https://doi.org/10.1038/mp.2012.123 [DOI: 10.1038/mp.2012.123]
  18. Frahm KA, Waldman JK, Luthra S et al (2018) A comparison of the sexually dimorphic dexamethasone transcriptome in mouse cerebral cortical and hypothalamic embryonic neural stem cells. Mol Cell Endocrinol 471:42–50. https://doi.org/10.1016/j.mce.2017.05.026 [DOI: 10.1016/j.mce.2017.05.026]
  19. Galderisi U, Jori FP, Giordano A (2003) Cell cycle regulation and neural differentiation. Oncogene 22:5208–5219. https://doi.org/10.1038/sj.onc.1206558 [DOI: 10.1038/sj.onc.1206558]
  20. Ghali O, Broux O, Falgayrac G et al (2015) Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol 16:9. https://doi.org/10.1186/s12860-015-0056-6 [DOI: 10.1186/s12860-015-0056-6]
  21. Glick RD, Medary I, Aronson DC et al (2000) The effects of serum depletion and dexamethasone on growth and differentiation of human neuroblastoma cell lines. J Pediatr Surg 35:465–472 [DOI: 10.1016/S0022-3468(00)90216-1]
  22. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788. https://doi.org/10.1038/nrm1739 [DOI: 10.1038/nrm1739]
  23. Hardwick LJA, Ali FR, Azzarelli R, Philpott A (2015) Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 359:187–200. https://doi.org/10.1007/s00441-014-1895-8 [DOI: 10.1007/s00441-014-1895-8]
  24. Harms C, Albrecht K, Harms U et al (2007) Phosphatidylinositol 3-Akt-kinase-dependent phosphorylation of p21Waf1/Cip1 as a novel mechanism of neuroprotection by glucocorticoids. J Neurosci 27:4562–4571. https://doi.org/10.1523/JNEUROSCI.5110-06.2007 [DOI: 10.1523/JNEUROSCI.5110-06.2007]
  25. Heberden C, Meffray E, Goustard-Langelier B et al (2013) Dexamethasone inhibits the maturation of newly formed neurons and glia supplemented with polyunsaturated fatty acids. J Steroid Biochem Mol Biol 138:395–402. https://doi.org/10.1016/j.jsbmb.2013.07.010 [DOI: 10.1016/j.jsbmb.2013.07.010]
  26. Horton CD, Qi Y, Chikaraishi D, Wang JKT (2001) Neurotrophin-3 mediates the autocrine survival of the catecholaminergic CAD CNS neuronal cell line. J Neurochem 76:201–209. https://doi.org/10.1046/j.1471-4159.2001.00017.x [DOI: 10.1046/j.1471-4159.2001.00017.x]
  27. Howard MK, Burke LC, Mailhos C et al (1993) Cell cycle arrest of proliferating neuronal cells by serum deprivation can result in either apoptosis or differentiation. J Neurochem 60:1783–1791. https://doi.org/10.1111/j.1471-4159.1993.tb13404.x [DOI: 10.1111/j.1471-4159.1993.tb13404.x]
  28. Hu R, Cao Q, Sun Z et al (2017) A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium. Int J Mol Med. https://doi.org/10.3892/ijmm.2017.3195 [DOI: 10.3892/ijmm.2017.3195]
  29. Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115:97–105. https://doi.org/10.1016/S0165-0270(02)00007-9 [DOI: 10.1016/S0165-0270(02)00007-9]
  30. Kino T (2015) Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders. Front Physiol. https://doi.org/10.3389/fphys.2015.00230 [DOI: 10.3389/fphys.2015.00230]
  31. Koutmani Y, Karalis KP (2015) Neural stem cells respond to stress hormones: distinguishing beneficial from detrimental stress. Front Physiol. https://doi.org/10.3389/fphys.2015.00077 [DOI: 10.3389/fphys.2015.00077]
  32. Li Y, Hou LX-E, Aktiv A, Dahlström A (2005) Immunohistochemical characterisation of differentiated CAD cells: expression of peptides and chromogranins. Histochem Cell Biol 124:25. https://doi.org/10.1007/s00418-005-0017-9 [DOI: 10.1007/s00418-005-0017-9]
  33. Li Y, Hou LX-E, Aktiv A, Dahlström A (2007) Studies of the central nervous system-derived CAD cell line, a suitable model for intraneuronal transport studies? J Neurosci Res 85:2601–2609. https://doi.org/10.1002/jnr.21216 [DOI: 10.1002/jnr.21216]
  34. Lieberman R, Kranzler HR, Levine ES, Covault J (2017) Examining FKBP5 mRNA expression in human iPSC-derived neural cells. Psychiatry Res 247:172–181. https://doi.org/10.1016/j.psychres.2016.11.027 [DOI: 10.1016/j.psychres.2016.11.027]
  35. Lin K, Yin A, Yao L, Li Y (2015) N-myc downstream-regulated gene 2 in the nervous system: from expression pattern to function. Acta Biochim Biophys Sin 47:761–766. https://doi.org/10.1093/abbs/gmv082 [DOI: 10.1093/abbs/gmv082]
  36. Lindenboim L, Diamond R, Rothenberg E, Stein R (1995) Apoptosis induced by serum deprivation of PC12 cells is not preceded by growth arrest and can occur at each phase of the cell cycle. Cancer Res 55:1242–1247 [PMID: 7533660]
  37. Loi M, Trazzi S, Fuchs C et al (2020) Increased DNA damage and apoptosis in CDKL5-deficient neurons. Mol Neurobiol 57:2244–2262. https://doi.org/10.1007/s12035-020-01884-8 [DOI: 10.1007/s12035-020-01884-8]
  38. Ma XX, Liu J, Wang CM et al (2018) Low-dose curcumin stimulates proliferation of rat embryonic neural stem cells through glucocorticoid receptor and STAT3. CNS Neurosci Ther 24:940–946. https://doi.org/10.1111/cns.12843 [DOI: 10.1111/cns.12843]
  39. Marlier Q, D’aes T, Verteneuil S et al (2020) Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci. https://doi.org/10.1007/s00018-020-03548- [DOI: 10.1007/s00018-020-03548-]
  40. Ménard C, Hein P, Paquin A et al (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36:597–610. https://doi.org/10.1016/S0896-6273(02)01026-7 [DOI: 10.1016/S0896-6273(02)01026-7]
  41. Mravec B, Horvathova L, Padova A (2018) Brain under stress and Alzheimer’s disease. Cell Mol Neurobiol 38:73–84. https://doi.org/10.1007/s10571-017-0521-1 [DOI: 10.1007/s10571-017-0521-1]
  42. Muresan Z, Muresan V (2006) Neuritic deposits of amyloid-beta peptide in a subpopulation of central nervous system-derived neuronal cells. Mol Cell Biol 26:4982–4997. https://doi.org/10.1128/MCB.00371-06 [DOI: 10.1128/MCB.00371-06]
  43. Nürnberg E, Horschitz S, Schloss P, Meyer-Lindenberg A (2018) Basal glucocorticoid receptor activation induces proliferation and inhibits neuronal differentiation of human induced pluripotent stem cell-derived neuronal precursor cells. J Steroid Biochem Mol Biol 182:119–126. https://doi.org/10.1016/j.jsbmb.2018.04.017 [DOI: 10.1016/j.jsbmb.2018.04.017]
  44. Odaka H, Adachi N, Numakawa T (2017) Impact of glucocorticoid on neurogenesis. Neural Regen Res 12:1028–1035. https://doi.org/10.4103/1673-5374.211174 [DOI: 10.4103/1673-5374.211174]
  45. Pakdeepak K, Chokchaisiri R, Govitrapong P et al (2020) 5,6,7,4′-Tetramethoxyflavanone alleviates neurodegeneration in a dexamethasone-induced neurodegenerative mouse model through promotion of neurogenesis via the Raf/ ERK1/2 pathway. Phytother Res. https://doi.org/10.1002/ptr.6983 [DOI: 10.1002/ptr.6983]
  46. Paris M, Wang W-H, Shin M-H et al (2006) Homeodomain transcription factor Phox2a, via cyclic AMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation. Mol Cell Biol 26:8826–8839. https://doi.org/10.1128/MCB.00575-06 [DOI: 10.1128/MCB.00575-06]
  47. Pasuit JB, Li Z, Kuzhikandathil EV (2004) Multi-modal regulation of endogenous D1 dopamine receptor expression and function in the CAD catecholaminergic cell line. J Neurochem 89:1508–1519. https://doi.org/10.1111/j.1471-4159.2004.02450.x [DOI: 10.1111/j.1471-4159.2004.02450.x]
  48. Qi Y, Wang JKT, McMillian M, Chikaraishi DM (1997) Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J Neurosci 17:1217–1225. https://doi.org/10.1523/JNEUROSCI.17-04-01217.1997 [DOI: 10.1523/JNEUROSCI.17-04-01217.1997]
  49. Ruijtenberg S, van den Heuvel S (2016) Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle 15:196–212. https://doi.org/10.1080/15384101.2015.1120925 [DOI: 10.1080/15384101.2015.1120925]
  50. Schouten M, Bielefeld P, Garcia-Corzo L et al (2019) Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in the aging brain. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0440-2 [DOI: 10.1038/s41380-019-0440-2]
  51. Sundberg M (2006) Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1. J Neurosci 26:5402–5410. https://doi.org/10.1523/JNEUROSCI.4906-05.2006 [DOI: 10.1523/JNEUROSCI.4906-05.2006]
  52. Suri C, Fung B, Tischler A, Chikaraishi D (1993) Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice. J Neurosci 13:1280–1291. https://doi.org/10.1523/JNEUROSCI.13-03-01280.1993 [DOI: 10.1523/JNEUROSCI.13-03-01280.1993]
  53. Urbach A, Witte OW (2019) Divide or commit—revisiting the role of cell cycle regulators in adult hippocampal neurogenesis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2019.00055 [DOI: 10.3389/fcell.2019.00055]
  54. Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E (2020) PC12 cell line: cell types, coating of culture vessels. Differ Other Cult Cond Cells 9:958. https://doi.org/10.3390/cells9040958 [DOI: 10.3390/cells9040958]
  55. Xicoy H, Wieringa B, Martens GJM (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 12:10. https://doi.org/10.1186/s13024-017-0149-0 [DOI: 10.1186/s13024-017-0149-0]

Grants

  1. NDFR20/2563/Mahidol University
  2. IRN58W0004/Thailand Research Fund
  3. CIF/Faculty of Science, Mahidol University

MeSH Term

Animals
Cell Differentiation
Central Nervous System
Dexamethasone
Mice
Neurites
Neurons
Receptors, Glucocorticoid

Chemicals

Receptors, Glucocorticoid
Dexamethasone

Word Cloud

Created with Highcharts 10.0.0CADcellsneuronalcelldifferentiationlinesurvivalDexDex-differentiatedCatha-differentiatedusedvitromodelcellularmolecularstudiesserum-freemediaconditionsdifferentiatednovelglucocorticoidadditionexpressedGRDexamethasoneNeuronalDifferentiationcentralnervoussystem-derivedcatecholaminergicoriginatingtyrosinehydroxylaseTH-producingneuronslocatedaroundlocuscoeruleusareamousebraindueabilitydifferentiateHoweverlackserum-derivedfactorslimitslongevitymaintainedhealthytherebylimitinguselong-termculturepresentmethodutilizesdexamethasonesyntheticreceptoragonistSpecificallydiscovered100 µM1%fetalbovineserumFBS-supplementedeffectivelyinducedcharacterizedneuriteformationelongationexitedcyclestoppedproliferatingextendedneuritesmarkerseffectsdependentreceptorsabolishedknockdownImportantlyshowedlongerdurationRNA-sequencingqPCRdatademonstrateseveralgenesinvolvedproliferationpathwaysdifferentiallyfirststudyrevealmethodologygeneratepostmitoticmayutilizedneurobiologyresearchNovelMethodologyUsingInduceCNS-DerivedCatecholaminergicCellsProliferation

Similar Articles

Cited By

No available data.