Molecular modeling of potent novel sulfonamide derivatives as non-peptide small molecule anti-COVID 19 agents.

Sayantan Pradhan, Ramesh Prasad, Chittaranjan Sinha, Prosenjit Sen
Author Information
  1. Sayantan Pradhan: Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, India.
  2. Ramesh Prasad: Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
  3. Chittaranjan Sinha: Department of Chemistry, Jadavpur University, Kolkata, India.
  4. Prosenjit Sen: Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, India.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19. The Sulfonamides groups have been widely introduced in several drugs, especially for their antibacterial activities and generally prescribed for respiratory infections. On the other hand, imidazole groups have the multipotency to act as drugs, including antiviral activity. We have used a structure-based drug design approach to design some imidazole derivatives of sulfonamide, which can efficiently bind to the active site of SARS-CoV-2 main protease and thus may have the potential to inhibit its proteases activity. We conducted molecular docking and molecular dynamics simulation to observe the stability and flexibility of inhibitor complexes. We have checked ADMET (absorption, distribution, metabolism, excretion and toxicity) and drug-likeness rules to scrutinize toxicity and then designed the most potent compound based on computational chemistry. Our small predicted molecule non-peptide protease inhibitors could provide a useful model in the further search for novel compounds since it has many advantages over peptidic drugs, like lower side effects, toxicity and less chance of drug resistance. Further, we confirmed the stability of our inhibitor-complex and interaction profile through the Molecular dynamics simulation study. Our small predicted moleculeCommunicated by Ramaswamy H. Sarma.

Keywords

References

  1. J Med Chem. 1999 Dec 2;42(24):4942-51 [PMID: 10585204]
  2. Comput Struct Biotechnol J. 2013 Apr 02;5:e201302011 [PMID: 24688704]
  3. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  4. BMJ. 1991 Aug 24;303(6800):428-9 [PMID: 1912830]
  5. Bioorg Med Chem Lett. 2003 Sep 1;13(17):2863-5 [PMID: 14611845]
  6. Spectrochim Acta A Mol Biomol Spectrosc. 2012 Dec;98:229-39 [PMID: 22958978]
  7. Mutat Res. 2000 Nov 20;455(1-2):29-60 [PMID: 11113466]
  8. Biochemistry. 2004 Apr 20;43(15):4568-74 [PMID: 15078103]
  9. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 [PMID: 26400175]
  10. Eur J Med Chem. 2011 Dec;46(12):5763-8 [PMID: 22019186]
  11. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jan 5;244:118825 [PMID: 32866803]
  12. Chem Biol. 2003 Sep;10(9):787-97 [PMID: 14522049]
  13. Clin Microbiol Rev. 2015 Apr;28(2):465-522 [PMID: 25810418]
  14. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  15. Eur J Med Chem. 2009 Jun;44(6):2347-53 [PMID: 18851889]
  16. Biochemistry. 2008 Feb 26;47(8):2617-30 [PMID: 18237196]
  17. Mol Pharm. 2011 Jun 6;8(3):889-900 [PMID: 21413792]
  18. J Med Chem. 2002 Jun 6;45(12):2615-23 [PMID: 12036371]
  19. Anal Bioanal Chem. 2015 Sep;407(24):7453-66 [PMID: 26277183]
  20. J Phys Chem B. 1998 Apr 30;102(18):3586-616 [PMID: 24889800]
  21. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  22. In Silico Pharmacol. 2018 Mar 22;6(1):4 [PMID: 30607317]
  23. Science. 2020 Apr 24;368(6489):409-412 [PMID: 32198291]
  24. Annu Rev Pharmacol Toxicol. 1998;38:431-60 [PMID: 9597162]
  25. Nat Biotechnol. 2001 Aug;19(8):722-6 [PMID: 11479558]
  26. Chem Sci. 2020 Jun 25;11(39):10626-10630 [PMID: 34094317]
  27. Viruses. 2020 Apr 14;12(4): [PMID: 32295237]
  28. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Apr 15;251:119388 [PMID: 33503560]
  29. J Comb Chem. 1999 Jan;1(1):55-68 [PMID: 10746014]
  30. Drug Metab Dispos. 2005 Nov;33(11):1723-8 [PMID: 16103134]
  31. Nature. 2006 Mar 23;440(7083):463-9 [PMID: 16554806]
  32. J Mol Biol. 1989 Jul 5;208(1):159-81 [PMID: 2769750]
  33. Methods Mol Biol. 2014;1079:105-16 [PMID: 24170397]
  34. J Chem Inf Model. 2012 Nov 26;52(11):3099-105 [PMID: 23092397]
  35. Nat Biotechnol. 2020 Apr;38(4):379-381 [PMID: 32205870]
  36. J Med Chem. 2001 Jun 7;44(12):1841-6 [PMID: 11384230]
  37. Bioinformatics. 2020 Jun 1;36(11):3295-3298 [PMID: 32239142]

MeSH Term

Antiviral Agents
Humans
Imidazoles
Molecular Docking Simulation
Molecular Dynamics Simulation
Protease Inhibitors
SARS-CoV-2
Sulfonamides
COVID-19 Drug Treatment

Chemicals

Antiviral Agents
Imidazoles
Protease Inhibitors
Sulfonamides

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2drugsdrugdesignproteasemolecularsimulationtoxicitysmallrespiratorygroupsimidazoleactivitystructure-basedderivativessulfonamidemaindockingdynamicsstabilityADMETdrug-likenesspotentpredictedmoleculenon-peptidenovelMolecularSevereacutesyndromecoronavirus2causativeagentCOVID-19Sulfonamideswidelyintroducedseveralespeciallyantibacterialactivitiesgenerallyprescribedinfectionshandmultipotencyactincludingantiviralusedapproachcanefficientlybindactivesitethusmaypotentialinhibitproteasesconductedobserveflexibilityinhibitorcomplexescheckedabsorptiondistributionmetabolismexcretionrulesscrutinizedesignedcompoundbasedcomputationalchemistryinhibitorsprovideusefulmodelsearchcompoundssincemanyadvantagespeptidiclikelowersideeffectslesschanceresistanceconfirmedinhibitor-complexinteractionprofilestudymoleculeCommunicatedRamaswamyHSarmamodelinganti-COVID19agentsMD

Similar Articles

Cited By