The Molecular Mechanism of Fludioxonil Action Is Different to Osmotic Stress Sensing.

Katharina Bersching, Stefan Jacob
Author Information
  1. Katharina Bersching: Institute for Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
  2. Stefan Jacob: Institute for Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany. ORCID

Abstract

The group III two-component hybrid histidine kinase MoHik1p in the filamentous fungus is known to be a sensor for external osmotic stress and essential for the fungicidal activity of the phenylpyrrole fludioxonil. The mode of action of fludioxonil has not yet been completely clarified but rather assumed to hyperactivate the high osmolarity glycerol (HOG) signaling pathway. To date, not much is known about the detailed molecular mechanism of how osmotic stress is detected or fungicidal activity is initiated within the HOG pathway. The molecular mechanism of signaling was studied using a mutant strain in which the HisKA signaling domain was modified by an amino acid change of histidine H736 to alanine A736. We found that is as resistant to fludioxonil but not as sensitive to osmotic stress as the null mutant . H736 is required for fludioxonil action but is not essential for sensing sorbitol stress. Consequently, this report provides evidence of the difference in the molecular mechanism of fludioxonil action and the perception of osmotic stress. This is an excellent basis to understand the successful phenylpyrrole-fungicides' mode of action better and will give new ideas to decipher cellular signaling mechanisms.

Keywords

References

  1. Mol Microbiol. 2019 Mar;111(3):662-677 [PMID: 30537256]
  2. Microbiologyopen. 2014 Oct;3(5):668-87 [PMID: 25103193]
  3. Structure. 2013 Jul 2;21(7):1127-36 [PMID: 23746806]
  4. Nat Struct Biol. 2000 Aug;7(8):626-33 [PMID: 10932244]
  5. J Am Chem Soc. 2012 Jun 6;134(22):9150-3 [PMID: 22606938]
  6. Mol Microbiol. 2017 Jan;103(2):197-202 [PMID: 27618209]
  7. BMC Genomics. 2019 Oct 22;20(1):763 [PMID: 31640564]
  8. Structure. 2012 Apr 4;20(4):729-41 [PMID: 22483119]
  9. Front Microbiol. 2016 Dec 16;7:2014 [PMID: 28018333]
  10. Fungal Biol. 2015 Jul;119(7):580-94 [PMID: 26058534]
  11. Biochemistry. 2018 Jul 24;57(29):4368-4373 [PMID: 29944360]
  12. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1000-1008 [PMID: 31882446]
  13. Pest Manag Sci. 2019 Mar;75(3):772-778 [PMID: 30123985]
  14. Fungal Genet Biol. 2010 Aug;47(8):721-6 [PMID: 20546911]
  15. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27872062]
  16. Eukaryot Cell. 2003 Dec;2(6):1151-61 [PMID: 14665450]
  17. ACS Chem Biol. 2020 May 15;15(5):1252-1260 [PMID: 32043868]
  18. Cell. 2009 Oct 16;139(2):325-36 [PMID: 19800110]
  19. Pest Manag Sci. 2016 Jun;72(6):1268-74 [PMID: 26888741]
  20. FEMS Microbiol Lett. 2007 May;270(2):284-90 [PMID: 17355596]
  21. Mol Microbiol. 2007 Apr;64(2):293-307 [PMID: 17378924]
  22. Food Chem Toxicol. 2019 Jan;123:561-565 [PMID: 30458269]
  23. J Mol Biol. 2016 Sep 25;428(19):3752-75 [PMID: 27519796]
  24. Eukaryot Cell. 2005 Nov;4(11):1820-8 [PMID: 16278449]
  25. BMC Microbiol. 2013 Sep 17;13:209 [PMID: 24044701]
  26. J Proteome Res. 2011 Feb 4;10(2):751-5 [PMID: 21121676]
  27. J Am Chem Soc. 2014 Sep 17;136(37):12899-911 [PMID: 25156620]
  28. Trends Biochem Sci. 2001 Jun;26(6):369-76 [PMID: 11406410]
  29. Mol Cells. 2001 Dec 31;12(3):407-11 [PMID: 11804343]
  30. Structure. 2015 Jun 2;23(6):981-94 [PMID: 25982528]
  31. Nat Biotechnol. 1998 Sep;16(9):839-42 [PMID: 9743116]
  32. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]

Grants

  1. 403841309/Deutsche Forschungsgemeinschaft
  2. 426554840/Deutsche Forschungsgemeinschaft

Word Cloud

Created with Highcharts 10.0.0fludioxonilstressactionosmoticsignalinghistidinemodeHOGpathwaymolecularmechanismkinaseknownessentialfungicidalactivityphenylpyrrolehighosmolarityglycerolmutantH736groupIIItwo-componenthybridMoHik1pfilamentousfungussensorexternalyetcompletelyclarifiedratherassumedhyperactivatedatemuchdetaileddetectedinitiatedwithinstudiedusingstrainHisKAdomainmodifiedaminoacidchangealanineA736foundresistantsensitivenullrequiredsensingsorbitolConsequentlyreportprovidesevidencedifferenceperceptionexcellentbasisunderstandsuccessfulphenylpyrrole-fungicides'betterwillgivenewideasdeciphercellularmechanismsMolecularMechanismFludioxonilActionDifferentOsmoticStressSensingHIK1MagnaportheoryzaeMoHIK1fungicidesignaltransduction

Similar Articles

Cited By