Applications of Blocker Nucleic Acids and Non-Metazoan PCR Improves the Discovery of the Eukaryotic Microbiome in Ticks.

Yurie Taya, Gohta Kinoshita, Wessam Mohamed Ahmed Mohamed, Mohamed Abdallah Mohamed Moustafa, Shohei Ogata, Elisha Chatanga, Yuma Ohari, Kodai Kusakisako, Keita Matsuno, Nariaki Nonaka, Ryo Nakao
Author Information
  1. Yurie Taya: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan.
  2. Gohta Kinoshita: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan.
  3. Wessam Mohamed Ahmed Mohamed: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan. ORCID
  4. Mohamed Abdallah Mohamed Moustafa: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan. ORCID
  5. Shohei Ogata: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan.
  6. Elisha Chatanga: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan. ORCID
  7. Yuma Ohari: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan. ORCID
  8. Kodai Kusakisako: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan.
  9. Keita Matsuno: Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan. ORCID
  10. Nariaki Nonaka: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan.
  11. Ryo Nakao: Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan. ORCID

Abstract

Ticks serve as important vectors of a variety of pathogens. Recently, the viral and prokaryotic microbiomes in ticks have been explored using next-generation sequencing to understand the physiology of ticks and their interactions with pathogens. However, analyses of eukaryotic communities in ticks are limited, owing to the lack of suitable methods. In this study, we developed new methods to selectively amplify microeukaryote genes in tick-derived DNA by blocking the amplification of the 18S rRNA gene of ticks using artificial nucleic acids: peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). In addition, another PCR using non-metazoan primers, referred to as UNonMet-PCR, was performed for comparison. We performed each PCR using tick-derived DNA and sequenced the amplicons using the Illumina MiSeq platform. Almost all sequences obtained by conventional PCR were derived from ticks, whereas the proportion of microeukaryotic reads and alpha diversity increased upon using the newly developed method. Additionally, the PNA- or LNA-based methods were suitable for paneukaryotic analyses, whereas the UNonMet-PCR method was particularly sensitive to fungi. The newly described methods enable analyses of the eukaryotic microbiome in ticks. We expect the application of these methods to improve our understanding of the tick microbiome.

Keywords

References

  1. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  2. ISME J. 2020 Feb;14(2):609-622 [PMID: 31719654]
  3. J Invertebr Pathol. 2014 Mar;117:13-8 [PMID: 24480672]
  4. Microorganisms. 2020 Jun 30;8(7): [PMID: 32630152]
  5. PLoS One. 2019 Mar 19;14(3):e0213384 [PMID: 30889229]
  6. Plant Mol Biol. 2016 Apr;90(6):657-64 [PMID: 26644135]
  7. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  8. Environ Microbiol. 2019 Oct;21(10):3855-3861 [PMID: 31278828]
  9. Commun Biol. 2020 Sep 18;3(1):518 [PMID: 32948809]
  10. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  11. Microbes Environ. 2014 Sep 17;29(3):286-95 [PMID: 25030190]
  12. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  13. Sci Rep. 2020 Jul 15;10(1):11634 [PMID: 32669657]
  14. PLoS One. 2015 Dec 09;10(12):e0144552 [PMID: 26650541]
  15. PLoS One. 2014 Feb 07;9(2):e87624 [PMID: 24516555]
  16. Mol Ecol. 2010 Mar;19 Suppl 1:21-31 [PMID: 20331767]
  17. Ecol Evol. 2017 Feb 05;7(5):1453-1461 [PMID: 28261457]
  18. AMB Express. 2019 Jul 17;9(1):111 [PMID: 31317283]
  19. Chemosphere. 2006 Dec;65(10):1731-7 [PMID: 17228426]
  20. Trends Parasitol. 2016 Sep;32(9):739-749 [PMID: 27236581]
  21. Exp Appl Acarol. 2001;25(12):993-1004 [PMID: 12465853]
  22. ISME J. 2017 Mar;11(3):813-816 [PMID: 27858931]
  23. Cell Host Microbe. 2014 Jan 15;15(1):58-71 [PMID: 24439898]
  24. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  25. J Virol. 2019 Jan 17;93(3): [PMID: 30404810]
  26. Appl Environ Microbiol. 2005 Mar;71(3):1473-9 [PMID: 15746350]
  27. J Med Entomol. 2009 May;46(3):557-65 [PMID: 19496427]
  28. Gene. 2005 Apr 11;349:67-75 [PMID: 15777663]
  29. Parasitol Res. 2016 Dec;115(12):4691-4699 [PMID: 27595990]
  30. J Med Entomol. 2008 Mar;45(2):289-97 [PMID: 18402145]
  31. Sci Rep. 2019 Feb 6;9(1):1500 [PMID: 30728409]
  32. PLoS One. 2014 Aug 04;9(8):e103961 [PMID: 25089898]
  33. Parasit Vectors. 2018 Jan 4;11(1):12 [PMID: 29301588]
  34. Anal Bioanal Chem. 2012 Apr;402(10):3071-89 [PMID: 22297860]
  35. Microbiologyopen. 2019 May;8(5):e00719 [PMID: 30239169]
  36. Dis Aquat Organ. 2003 Apr 24;54(3):219-27 [PMID: 12803386]
  37. J Med Entomol. 2011 Sep;48(5):985-90 [PMID: 21936316]
  38. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  39. J Allergy Clin Immunol. 2018 Aug;142(2):424-434.e10 [PMID: 29241587]
  40. J Invertebr Pathol. 1970 Jul;16(1):42-53 [PMID: 4988784]
  41. Trends Parasitol. 2019 Sep;35(9):687-694 [PMID: 31345767]
  42. Genome Biol Evol. 2015 May 28;7(6):1779-96 [PMID: 26025560]
  43. Sci Rep. 2020 Apr 7;10(1):6000 [PMID: 32265527]
  44. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74 [PMID: 20080750]
  45. F1000Res. 2016 Jun 14;5: [PMID: 27347391]
  46. Appl Environ Microbiol. 2003 Jan;69(1):625-33 [PMID: 12514050]
  47. J Med Entomol. 2011 Mar;48(2):337-44 [PMID: 21485371]
  48. Parasitology. 2011 Jun;138(7):866-72 [PMID: 21518469]
  49. Parasit Vectors. 2012 Jan 03;5(1):1 [PMID: 22212459]
  50. Sci Rep. 2017 Jun 12;7(1):3241 [PMID: 28607435]
  51. J Eukaryot Microbiol. 2004 May-Jun;51(3):325-32 [PMID: 15218702]
  52. Exp Appl Acarol. 2000;24(12):913-26 [PMID: 11354619]
  53. Trends Microbiol. 2008 Jul;16(7):345-52 [PMID: 18513972]
  54. Appl Microbiol Biotechnol. 2003 Mar;61(1):1-9 [PMID: 12658509]
  55. Eukaryot Cell. 2006 Sep;5(9):1571-6 [PMID: 16963639]
  56. Parasitology. 2007 Jul;134(Pt 7):967-74 [PMID: 17306058]
  57. PLoS One. 2011;6(11):e27492 [PMID: 22096583]
  58. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  59. Sci Rep. 2017 Sep 7;7(1):10870 [PMID: 28883464]
  60. Nat Commun. 2020 Jan 14;11(1):254 [PMID: 31937756]
  61. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5970-E5979 [PMID: 29891654]
  62. Nat Methods. 2013 Oct;10(10):999-1002 [PMID: 23995388]

Grants

  1. 16H06431, 19H03118, 19F19097, 20K21358, and 20KK0151/Japan Society for the Promotion of Science
  2. 20wm0225016j0001/Japan Agency for Medical Research and Development

Word Cloud

Created with Highcharts 10.0.0ticksusingmethodsnucleicPCRanalyseseukaryoticmicrobiomeTickspathogensnext-generationsequencingsuitabledevelopedtick-derivedDNAartificialacidsUNonMet-PCRperformedwhereasnewlymethodtickserveimportantvectorsvarietyRecentlyviralprokaryoticmicrobiomesexploredunderstandphysiologyinteractionsHowevercommunitieslimitedowinglackstudynewselectivelyamplifymicroeukaryotegenesblockingamplification18SrRNAgeneacids:peptidePNAslockedLNAsadditionanothernon-metazoanprimersreferredcomparisonsequencedampliconsIlluminaMiSeqplatformAlmostsequencesobtainedconventionalderivedproportionmicroeukaryoticreadsalphadiversityincreaseduponAdditionallyPNA-LNA-basedpaneukaryoticparticularlysensitivefungidescribedenableexpectapplicationimproveunderstandingApplicationsBlockerNucleicAcidsNon-MetazoanImprovesDiscoveryEukaryoticMicrobiomeacidprotists

Similar Articles

Cited By