Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products.

Anthony Mora-Sandí, Abigail Ramírez-González, Luis Castillo-Henríquez, Mary Lopretti-Correa, José Roberto Vega-Baudrit
Author Information
  1. Anthony Mora-Sandí: School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica.
  2. Abigail Ramírez-González: School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica.
  3. Luis Castillo-Henríquez: National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica. ORCID
  4. Mary Lopretti-Correa: Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay.
  5. José Roberto Vega-Baudrit: School of Chemistry, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica. ORCID

Abstract

Significant problems have arisen in recent years, such as global warming and hunger. These complications are related to the depletion and exploitation of natural resources, as well as environmental pollution. In this context, bioprocesses and biorefinery can be used to manage agro-industrial wastes for obtaining high-value-added products. A large number of by-products are composed of lignin and cellulose, having the potential to be exploited sustainably for chemical and biological conversion. The biorefinery of agro-industrial wastes has applications in many fields, such as pharmaceuticals, medicine, material engineering, and environmental remediation. A comprehensive approach has been developed toward the agro-industrial management of avocado () biomass waste, which can be transformed into high-value-added products to mitigate global warming, save non-renewable energy, and contribute to health and science. Therefore, this work presents a comprehensive review on avocado fruit waste biorefinery and its possible applications as biofuel, as drugs, as bioplastics, in the environmental field, and in emerging nanotechnological opportunities for economic and scientific growth.

Keywords

References

  1. Biomass Bioenergy. 2015 Jan;72:28-38 [PMID: 26109752]
  2. ACS Appl Bio Mater. 2019 Jan 22;2(1):127-134 [PMID: 35016335]
  3. Mater Sci Eng C Mater Biol Appl. 2018 Nov 1;92:1092-1116 [PMID: 30184731]
  4. J Agric Food Chem. 2019 Oct 23;67(42):11616-11626 [PMID: 31542929]
  5. Compr Rev Food Sci Food Saf. 2020 Mar;19(2):405-447 [PMID: 33325169]
  6. Enzyme Res. 2011;2011:787532 [PMID: 21687609]
  7. Food Chem. 2018 Jan 15;239:1009-1018 [PMID: 28873516]
  8. Biotechnol J. 2015 Jun;10(6):866-85 [PMID: 25904087]
  9. Science. 2014 May 16;344(6185):1246843 [PMID: 24833396]
  10. Bioresour Technol. 2016 Jan;199:83-91 [PMID: 26316403]
  11. Bioresour Technol. 2016 Jan;199:92-102 [PMID: 26277268]
  12. Food Chem. 2020 Feb 15;306:125635 [PMID: 31606637]
  13. Int J Biol Macromol. 2019 Jun 1;130:79-87 [PMID: 30659877]
  14. Bioresour Technol. 2016 Jan;199:34-41 [PMID: 26342787]
  15. Bioresour Bioprocess. 2017;4(1):7 [PMID: 28163994]
  16. Food Chem. 2016 Dec 15;213:440-449 [PMID: 27451202]
  17. J Agric Food Chem. 2015 Sep 30;63(38):8349-63 [PMID: 26325225]
  18. Food Res Int. 2020 Dec;138(Pt A):109774 [PMID: 33292952]
  19. J Agric Food Chem. 2020 Sep 30;68(39):10489-10516 [PMID: 32846084]
  20. Molecules. 2020 Aug 23;25(17): [PMID: 32842473]
  21. Molecules. 2019 Nov 23;24(23): [PMID: 31771199]
  22. Int J Biol Macromol. 2018 Mar;108:333-341 [PMID: 29174360]
  23. Biotechnol Biofuels. 2013 Jan 28;6(1):8 [PMID: 23356733]
  24. Appl Microbiol Biotechnol. 2020 Feb;104(4):1437-1461 [PMID: 31900560]
  25. Antioxidants (Basel). 2019 May 21;8(5): [PMID: 31117251]
  26. Bioresour Technol. 2018 Feb;250:770-776 [PMID: 29232647]
  27. Nanotechnol Sci Appl. 2015 Nov 04;8:45-54 [PMID: 26604715]
  28. Carbohydr Polym. 2015 Mar 6;117:917-922 [PMID: 25498717]
  29. Carbohydr Polym. 2019 Sep 1;219:29-38 [PMID: 31151527]
  30. Polymers (Basel). 2016 Jan 16;8(1): [PMID: 30979116]
  31. Molecules. 2017 Nov 29;22(12): [PMID: 29186078]
  32. Waste Manag. 2014 Dec;34(12):2634-40 [PMID: 25277823]
  33. Carbohydr Polym. 2015 Mar 6;117:486-493 [PMID: 25498662]
  34. Bioresour Technol. 2017 Nov;243:17-29 [PMID: 28651135]
  35. Appl Biochem Biotechnol. 2010 Jan;160(2):539-51 [PMID: 19125228]
  36. Nature. 2017 Feb 28;543(7643):15 [PMID: 28252092]
  37. Bioresour Technol. 2016 Jun;209:386-90 [PMID: 26972025]
  38. Molecules. 2020 Jun 21;25(12): [PMID: 32575814]
  39. Int J Biol Macromol. 2016 May;86:302-8 [PMID: 26800900]
  40. J Agric Food Chem. 2003 Apr 9;51(8):2216-21 [PMID: 12670159]
  41. Bioresour Technol. 2010 Jul;101(13):4851-61 [PMID: 20042329]
  42. Appl Biochem Biotechnol. 2005 Spring;121-124:1133-41 [PMID: 15930586]
  43. Food Res Int. 2019 Jan;115:451-459 [PMID: 30599964]
  44. Food Res Int. 2019 May;119:751-760 [PMID: 30884712]
  45. Electrophoresis. 2018 Apr 16;: [PMID: 29659037]
  46. Antioxidants (Basel). 2019 Sep 24;8(10): [PMID: 31554332]
  47. BMC Res Notes. 2016 Dec 12;9(1):509 [PMID: 27955705]
  48. J Food Sci. 2017 Jan;82(1):134-144 [PMID: 27871119]
  49. Bioresour Technol. 2018 Mar;251:57-62 [PMID: 29268151]

Word Cloud

Created with Highcharts 10.0.0environmentalbiorefineryagro-industrialavocadowasteglobalwarmingcanwasteshigh-value-addedproductsapplicationscomprehensivebiomassenergybiofuelSignificantproblemsarisenrecentyearshungercomplicationsrelateddepletionexploitationnaturalresourceswellpollutioncontextbioprocessesusedmanageobtaininglargenumberby-productscomposedlignincellulosepotentialexploitedsustainablychemicalbiologicalconversionmanyfieldspharmaceuticalsmedicinematerialengineeringremediationapproachdevelopedtowardmanagementtransformedmitigatesavenon-renewablecontributehealthscienceThereforeworkpresentsreviewfruitpossibledrugsbioplasticsfieldemergingnanotechnologicalopportunitieseconomicscientificgrowthAgro-IndustrialWasteBiorefinerySustainableHigh-Value-AddedProductsbiopolymersby-productrenewablevalorization

Similar Articles

Cited By