Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management-An Animal Model Study.

Tomasz Dębski, Ewa Kijeńska-Gawrońska, Aleksandra Zołocińska, Katarzyna Siennicka, Anna Słysz, Wiktor Paskal, Paweł K Włodarski, Wojciech Święszkowski, Zygmunt Pojda
Author Information
  1. Tomasz Dębski: Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034 Warsaw, Poland.
  2. Ewa Kijeńska-Gawrońska: Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland. ORCID
  3. Aleksandra Zołocińska: Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034 Warsaw, Poland.
  4. Katarzyna Siennicka: Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034 Warsaw, Poland. ORCID
  5. Anna Słysz: Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034 Warsaw, Poland. ORCID
  6. Wiktor Paskal: Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland. ORCID
  7. Paweł K Włodarski: Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland. ORCID
  8. Wojciech Święszkowski: Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
  9. Zygmunt Pojda: Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034 Warsaw, Poland. ORCID

Abstract

The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease ( < 0.0001); however, ASCs addition decreased efficiency vs. autograft ( < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B < 0.0001, C vs. B < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.

Keywords

References

  1. J Cell Physiol. 2019 Dec;234(12):23097-23110 [PMID: 31124125]
  2. Ann Plast Surg. 2020 Jun;84(6S Suppl 5):S369-S374 [PMID: 32039999]
  3. Mol Med Rep. 2019 Aug;20(2):1288-1296 [PMID: 31173248]
  4. Nanotechnology. 2014 Apr 25;25(16):165102 [PMID: 24670610]
  5. J Cell Mol Med. 2019 Apr;23(4):2822-2835 [PMID: 30772948]
  6. J Neurosurg. 2014 Jul;121(1):195-209 [PMID: 24816327]
  7. Neural Regen Res. 2015 Jun;10(6):1003-8 [PMID: 26199621]
  8. Crit Rev Biomed Eng. 2015;43(2-3):131-59 [PMID: 27278739]
  9. Neural Regen Res. 2018 May;13(5):854-861 [PMID: 29863016]
  10. Microsurgery. 2012 Jan;32(1):1-14 [PMID: 22121093]
  11. Neural Regen Res. 2017 Dec;12(12):2106-2112 [PMID: 29323053]
  12. Microsurgery. 2009;29(6):473-8 [PMID: 19308952]
  13. J Biomed Mater Res A. 2012 Feb;100(2):406-23 [PMID: 22106069]
  14. Brain Behav. 2017 Jun 30;7(8):e00755 [PMID: 28828216]
  15. Plast Reconstr Surg. 2019 Jul;144(1):48e-57e [PMID: 31246816]
  16. Stem Cells Dev. 2015 Sep 15;24(18):2127-41 [PMID: 26134465]
  17. J Plast Reconstr Aesthet Surg. 2010 Dec;63(12):e811-7 [PMID: 20851070]
  18. Int Rev Neurobiol. 2013;108:137-71 [PMID: 24083434]
  19. BMC Neurosci. 2011 Jul 15;12:68 [PMID: 21756368]
  20. Cell Transplant. 2015;24(2):213-22 [PMID: 24268028]
  21. J Vis Exp. 2013 Sep 26;(79):e50585 [PMID: 24121366]
  22. J Orthop Sci. 2013 Jan;18(1):145-51 [PMID: 22948962]
  23. J Neurosurg. 2018 Feb 9;130(1):184-196 [PMID: 29424651]
  24. J Hand Surg Am. 1992 Jul;17(4):677-87 [PMID: 1629548]
  25. Exp Ther Med. 2020 Jan;19(1):223-231 [PMID: 31853293]
  26. J Biomed Mater Res B Appl Biomater. 2010 Aug;94(2):421-8 [PMID: 20574981]
  27. BMC Biotechnol. 2008 Apr 11;8:39 [PMID: 18405347]
  28. Plast Reconstr Surg. 1989 Jan;83(1):129-38 [PMID: 2909054]
  29. Stem Cell Res Ther. 2020 Jan 23;11(1):34 [PMID: 31973733]
  30. Brain Res. 2020 Nov 1;1746:147025 [PMID: 32712125]
  31. Cell Transplant. 2016;25(3):559-74 [PMID: 26300431]
  32. J Plast Reconstr Aesthet Surg. 2020 Feb;73(2):222-230 [PMID: 31759923]
  33. Cell Prolif. 2010 Dec;43(6):606-16 [PMID: 21039999]
  34. Sci Rep. 2019 Jul 12;9(1):10095 [PMID: 31300753]
  35. Plast Reconstr Surg. 2016 Jul;138(1):132-139 [PMID: 27348645]
  36. J Nanosci Nanotechnol. 2007 Feb;7(2):424-34 [PMID: 17450774]
  37. Biomed Res Int. 2014;2014:835269 [PMID: 24818158]
  38. Cell Transplant. 2019 Sep-Oct;28(9-10):1220-1230 [PMID: 31148461]
  39. Arch Med Sci. 2011 Aug;7(4):592-6 [PMID: 22291793]
  40. J Hand Microsurg. 2018 Aug;10(2):61-65 [PMID: 30154617]
  41. Eur J Trauma Emerg Surg. 2020 Feb 5;: [PMID: 32025767]
  42. PLoS One. 2013 Aug 12;8(8):e71076 [PMID: 23951085]
  43. J Biomed Mater Res B Appl Biomater. 2012 May;100(4):1093-102 [PMID: 22438340]
  44. Front Cell Neurosci. 2019 Apr 04;13:104 [PMID: 31019452]
  45. Acta Biomater. 2011 Feb;7(2):634-43 [PMID: 20849984]
  46. Behav Res Methods. 2007 May;39(2):175-91 [PMID: 17695343]
  47. Scand J Trauma Resusc Emerg Med. 2018 Sep 10;26(1):76 [PMID: 30201025]
  48. Turk J Med Sci. 2016 Feb 17;46(2):539-48 [PMID: 27511522]

Grants

  1. 2013/11/B/ST8/03401/National Science Center

MeSH Term

Aniline Compounds
Animals
Caproates
Cells, Cultured
Collagen
Disease Models, Animal
Immunohistochemistry
Lactones
Male
Materials Testing
Mesenchymal Stem Cells
Microscopy, Electron, Scanning
Muscle, Skeletal
Nanofibers
Nerve Regeneration
Neurogenesis
Peripheral Nerve Injuries
Polyesters
Rats
Rats, Inbred Lew
Sciatic Nerve
Tissue Scaffolds
Transplantation, Autologous

Chemicals

Aniline Compounds
Caproates
Lactones
Polyesters
polyaniline
poly(lactide)
caprolactone
Collagen

Word Cloud

Created with Highcharts 10.0.0nerveASCsconduitPLLA-CL-COL-PANIGroupB<0ratsgapCDfibermusclevsefficiencyscaffoldenriched10Lewisharvestedsciatictrunkautograftcountshowedatrophy0001NerveaimexaminemadepolyL-lacticacid-co-polyϵ-caprolactonecollagenCOLpolyanilinePANIadipose-derivedstemcellsratmodeloptimizedelectrospuntubular-shapedstructureAdiposetissueculturetotal28inbredmaleunderwenttransectionexcisionmmfragmentremaineduntouchedexcisedusedstumpssecured6monthsobservationsacrificedGastrocnemiusmusclesnervesweighthistologyanalysisanalysesadvancedinterventionpreventedmassdecreasehoweveradditiondecreased05revealedsuperioreffectdensityobservedgroupsuse001conduitspromisingresultsmanagingdecreasingBioactiveNanofiber-BasedConduitsPeripheralGapManagement-AnAnimalModelStudyreconstructionperipheralinjury

Similar Articles

Cited By